1
|
Haq SU, Ling W, Aqib AI, Danmei H, Aleem MT, Fatima M, Ahmad S, Gao F. Exploring the intricacies of antimicrobial resistance: Understanding mechanisms, overcoming challenges, and pioneering innovative solutions. Eur J Pharmacol 2025; 998:177511. [PMID: 40090539 DOI: 10.1016/j.ejphar.2025.177511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 03/18/2025]
Abstract
Antimicrobial resistance (AMR) poses a growing global threat. This review examines AMR from diverse angles, tracing the story of antibiotic resistance from its origins to today's crisis. It explores the rise of AMR, from its historical roots to the urgent need to counter this escalating menace. The review explores antibiotic classes, mechanisms, resistance profiles, and genetics. It details bacterial resistance mechanisms with illustrative examples. Multidrug-resistant bacteria spotlight AMR's resilience. Modern AMR control offers hope through precision medicine, stewardship, combination therapy, surveillance, and international cooperation. Converging traditional and innovative treatments presents an exciting frontier as novel compounds seek to enhance antibiotic efficacy. This review calls for global unity and proactive engagement to address AMR collectively, emphasizing the quest for innovative solutions and responsible antibiotic use. It underscores the interconnectedness of science, responsibility, and action in combatting AMR. Humanity faces a choice between antibiotic efficacy and obsolescence. The call is clear: unite, innovate, and prevail against AMR.
Collapse
Affiliation(s)
- Shahbaz Ul Haq
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China.
| | - Wang Ling
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou, 730050, China
| | - Amjad Islam Aqib
- Department of Medicine, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Huang Danmei
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| | - Muhammad Tahir Aleem
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| | - Mahreen Fatima
- Faculty of Biosciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Saad Ahmad
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Fenfei Gao
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
2
|
Shoaib M, Aqib AI, Muzammil I, Majeed N, Bhutta ZA, Kulyar MFEA, Fatima M, Zaheer CNF, Muneer A, Murtaza M, Kashif M, Shafqat F, Pu W. MRSA compendium of epidemiology, transmission, pathophysiology, treatment, and prevention within one health framework. Front Microbiol 2023; 13:1067284. [PMID: 36704547 PMCID: PMC9871788 DOI: 10.3389/fmicb.2022.1067284] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Staphylococcus aureus is recognized as commensal as well as opportunistic pathogen of humans and animals. Methicillin resistant strain of S. aureus (MRSA) has emerged as a major pathogen in hospitals, community and veterinary settings that compromises the public health and livestock production. MRSA basically emerged from MSSA after acquiring SCCmec element through gene transfer containing mecA gene responsible for encoding PBP-2α. This protein renders the MRSA resistant to most of the β-lactam antibiotics. Due to the continuous increasing prevalence and transmission of MRSA in hospitals, community and veterinary settings posing a major threat to public health. Furthermore, high pathogenicity of MRSA due to a number of virulence factors produced by S. aureus along with antibiotic resistance help to breach the immunity of host and responsible for causing severe infections in humans and animals. The clinical manifestations of MRSA consist of skin and soft tissues infection to bacteremia, septicemia, toxic shock, and scalded skin syndrome. Moreover, due to the increasing resistance of MRSA to number of antibiotics, there is need to approach alternatives ways to overcome economic as well as human losses. This review is going to discuss various aspects of MRSA starting from emergence, transmission, epidemiology, pathophysiology, disease patterns in hosts, novel treatment, and control strategies.
Collapse
Affiliation(s)
- Muhammad Shoaib
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of the Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Amjad Islam Aqib
- Department of Medicine, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Iqra Muzammil
- Department of Medicine, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Noreen Majeed
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Zeeshan Ahmad Bhutta
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | | | - Mahreen Fatima
- Faculty of Biosciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | | | - Afshan Muneer
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Maheen Murtaza
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Muhammad Kashif
- Department of Microbiology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Furqan Shafqat
- Department of Microbiology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Wanxia Pu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of the Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
3
|
Solanki V, Tiwari M, Tiwari V. Subtractive proteomic analysis of antigenic extracellular proteins and design a multi-epitope vaccine against Staphylococcus aureus. Microbiol Immunol 2021; 65:302-316. [PMID: 33368661 DOI: 10.1111/1348-0421.12870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/08/2020] [Accepted: 12/21/2020] [Indexed: 01/04/2023]
Abstract
Staphylococcus aureus is a versatile Gram's positive bacterium that can reside as an asymptomatic colonizer, which can cause a wide range of skin, soft-tissue, and nosocomial infections. A vaccine against multi-drug resistant S. aureus, therefore, is urgently needed. Subtractive proteomics and reverse vaccinology are newly emerging techniques to design multiepitope-based vaccines. The analysis of 7290 proteomes (sensitive and resistant strains), five potent nonhuman homologous vaccine targets [(UNIPORT ID Q2FZL3 (Staphopain B), Q2G2R8 (Staphopain A), Q2FWP0 (uncharacterized leukocidin-like protein 1), Q2G1S6 (uncharacterized protein), and Q2FWV3 (Staphylokinase, putative)] were selected. These proteins were absent in the gut microbiome, which further enhances the significance of these proteins in vaccine design. These five virulence-associated proteins mainly have a role in the invasion mechanism in the host phagocyte cells. MHC I, MHC II, and B cell epitopes were identified in these five proteins. Finalized epitopes were examined by different online servers to screen suitable epitopes for multi-epitope based vaccine design. Shortlisted antigenic and nonallergenic associated epitopes were joined with linkers to design 30 variants (VSA1-VSA30) of multi-epitope vaccine conjugates. The antigenicity and allergenicity of all the 30 vaccine constructs were identified, and VSA30 was found to have the highest antigenicity and lowest allergenicity, and hence was selected for further study. Accordingly, VSA30 was docked with different HLA allelic variants, and the best-docked complex (VSA30-1SYS) was further analyzed by molecular dynamics simulation (MDS). The MDS result confirms the interaction of VSA30 with MHC (HLA-allelic variant). Thus, the final vaccine construct was in silico cloned in the pET28a vector for suitable expression in a heterologous system. Therefore, the designed vaccine construct VSA-30 can be developed as an appropriate vaccine to target S. aureus infection. VSA-30 still needs experimental validation to assure the antigenic and immunogenic properties.
Collapse
Affiliation(s)
- Vandana Solanki
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| | - Monalisa Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| |
Collapse
|