1
|
Lê-Bury P, Echenique-Rivera H, Pizarro-Cerdá J, Dussurget O. Determinants of bacterial survival and proliferation in blood. FEMS Microbiol Rev 2024; 48:fuae013. [PMID: 38734892 PMCID: PMC11163986 DOI: 10.1093/femsre/fuae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/13/2024] Open
Abstract
Bloodstream infection is a major public health concern associated with high mortality and high healthcare costs worldwide. Bacteremia can trigger fatal sepsis whose prevention, diagnosis, and management have been recognized as a global health priority by the World Health Organization. Additionally, infection control is increasingly threatened by antimicrobial resistance, which is the focus of global action plans in the framework of a One Health response. In-depth knowledge of the infection process is needed to develop efficient preventive and therapeutic measures. The pathogenesis of bloodstream infection is a dynamic process resulting from the invasion of the vascular system by bacteria, which finely regulate their metabolic pathways and virulence factors to overcome the blood immune defenses and proliferate. In this review, we highlight our current understanding of determinants of bacterial survival and proliferation in the bloodstream and discuss their interactions with the molecular and cellular components of blood.
Collapse
Affiliation(s)
- Pierre Lê-Bury
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 18 route du Panorama, 92260 Fontenay-aux-Roses, France
| | - Hebert Echenique-Rivera
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
| | - Javier Pizarro-Cerdá
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
- Institut Pasteur, Université Paris Cité, Yersinia National Reference Laboratory, WHO Collaborating Research & Reference Centre for Plague FRA-146, 28 rue du Dr Roux, 75015 Paris, France
| | - Olivier Dussurget
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
2
|
Wyrsch ER, Hoye BJ, Sanderson-Smith M, Gorman J, Maute K, Cummins ML, Jarocki VM, Marenda MS, Dolejska M, Djordjevic SP. The faecal microbiome of the Australian silver gull contains phylogenetically diverse ExPEC, aEPEC and Escherichia coli carrying the transmissible locus of stress tolerance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170815. [PMID: 38336047 DOI: 10.1016/j.scitotenv.2024.170815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/28/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Wildlife are implicated in the dissemination of antimicrobial resistance, but their roles as hosts for Escherichia coli that pose a threat to human and animal health is limited. Gulls (family Laridae) in particular, are known to carry diverse lineages of multiple-antibiotic resistant E. coli, including extra-intestinal pathogenic E. coli (ExPEC). Whole genome sequencing of 431 E. coli isolates from 69 healthy Australian silver gulls (Chroicocephalus novaehollandiae) sampled during the 2019 breeding season, and without antibiotic selection, was undertaken to assess carriage in an urban wildlife population. Phylogenetic analysis and genotyping resolved 123 sequence types (STs) representing most phylogroups, and identified diverse ExPEC, including an expansive phylogroup B2 cluster comprising 103 isolates (24 %; 31 STs). Analysis of the mobilome identified: i) widespread carriage of the Yersinia High Pathogenicity Island (HPI), a key ExPEC virulence determinant; ii) broad distribution of two novel phage elements, each carrying sitABCD and iii) carriage of the transmissible locus of stress tolerance (tLST), an element linked to sanitation resistance. Of the 169 HPI carrying isolates, 49 (48 %) represented diverse B2 isolates hosting FII-64 ColV-like plasmids that lacked iutABC and sitABC operons typical of ColV plasmids, but carried the serine protease autotransporter gene, sha. Diverse E. coli also carried archetypal ColV plasmids (52 isolates; 12 %). Clusters of closely related E. coli (<50 SNVs) from ST58, ST457 and ST746, sourced from healthy gulls, humans, and companion animals, were frequently identified. In summary, anthropogenically impacted gulls host an expansive E. coli population, including: i) putative ExPEC that carry ColV virulence gene cargo (101 isolates; 23.4 %) and HPI (169 isolates; 39 %); ii) atypical enteropathogenic E. coli (EPEC) (17 isolates; 3.9 %), and iii) E. coli that carry the tLST (20 isolates; 4.6 %). Gulls play an important role in the evolution and transmission of E. coli that impact human health.
Collapse
Affiliation(s)
- Ethan R Wyrsch
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, Australia
| | - Bethany J Hoye
- School of Earth, Atmospheric and Life Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Martina Sanderson-Smith
- Molecular Horizons Research Institute, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Jody Gorman
- Molecular Horizons Research Institute, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Kimberly Maute
- School of Earth, Atmospheric and Life Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Max L Cummins
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, Australia
| | - Veronica M Jarocki
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, Australia
| | - Marc S Marenda
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC 3030, Australia
| | - Monika Dolejska
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Czech Republic; CEITEC VETUNI, University of Veterinary Sciences Brno, Czech Republic; Department of Clinical Microbiology and Immunology, Institute of Laboratory Medicine, The University Hospital Brno, Czech Republic; Department of Microbiology, Faculty of Medicine and University Hospital in Plzen, Charles University, Pilsen, Czech Republic
| | - Steven P Djordjevic
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, Australia.
| |
Collapse
|
3
|
Royer G, Clermont O, Marin J, Condamine B, Dion S, Blanquart F, Galardini M, Denamur E. Epistatic interactions between the high pathogenicity island and other iron uptake systems shape Escherichia coli extra-intestinal virulence. Nat Commun 2023; 14:3667. [PMID: 37339949 DOI: 10.1038/s41467-023-39428-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 06/13/2023] [Indexed: 06/22/2023] Open
Abstract
The intrinsic virulence of extra-intestinal pathogenic Escherichia coli is associated with numerous chromosomal and/or plasmid-borne genes, encoding diverse functions such as adhesins, toxins, and iron capture systems. However, the respective contribution to virulence of those genes seems to depend on the genetic background and is poorly understood. Here, we analyze genomes of 232 strains of sequence type complex STc58 and show that virulence (quantified in a mouse model of sepsis) emerged in a sub-group of STc58 due to the presence of the siderophore-encoding high-pathogenicity island (HPI). When extending our genome-wide association study to 370 Escherichia strains, we show that full virulence is associated with the presence of the aer or sit operons, in addition to the HPI. The prevalence of these operons, their co-occurrence and their genomic location depend on strain phylogeny. Thus, selection of lineage-dependent specific associations of virulence-associated genes argues for strong epistatic interactions shaping the emergence of virulence in E. coli.
Collapse
Affiliation(s)
- Guilhem Royer
- Université Paris Cité, IAME, INSERM, Paris, France
- Département de Prévention, Diagnostic et Traitement des Infections, Hôpital Henri Mondor, Créteil, France
- LABGeM, Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Paris-Saclay, Evry, France
- EERA Unit "Ecology and Evolution of Antibiotics Resistance," Institut Pasteur-Assistance Publique/Hôpitaux de Paris-Université Paris-Saclay, Paris, France
- UMR CNRS, 3525, Paris, France
| | | | - Julie Marin
- Université Paris Cité, IAME, INSERM, Paris, France
- Université Sorbonne Paris Nord, IAME, INSERM, Bobigny, France
| | | | - Sara Dion
- Université Paris Cité, IAME, INSERM, Paris, France
| | - François Blanquart
- Center for Interdisciplinary Research in Biology, CNRS, Collège de France, PSL Research University, Paris, France
| | - Marco Galardini
- Institute for Molecular Bacteriology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School (MHH), Hannover, Germany
| | - Erick Denamur
- Université Paris Cité, IAME, INSERM, Paris, France.
- AP-HP, Hôpital Bichat, Laboratoire de Génétique Moléculaire, Paris, France.
| |
Collapse
|
4
|
Baier-Grabner S, Equiluz-Bruck S, Endress D, Blaschitz M, Schubert S, Indra A, Fudel M, Frischer T, Götzinger F. A Yersiniabactin-producing Klebsiella aerogenes Strain Causing an Outbreak in an Austrian Neonatal Intensive Care Unit. Pediatr Infect Dis J 2022; 41:593-599. [PMID: 35421055 DOI: 10.1097/inf.0000000000003553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Yersiniabactin, a siderophore with a high affinity to iron, has been described as a potential virulence factor in Enterobacteriaceae. Klebsiella aerogenes is a Gram-negative rod known to cause invasive infection in very low birth weight infants but is an unusual pathogen to cause outbreaks in neonatal intensive care units (NICU). METHODS We performed a retrospective analysis of all patients colonized with K. aerogenes in our NICU from September to December 2018. Each infant with an occurrence of K. aerogenes in any microbiological culture was defined as a case. Clinical data were taken from medical charts. K. aerogenes isolates were genotyped using whole-genome sequencing combined with core genome multilocus sequencing type analysis. Yersiniabactin production was evaluated by luciferase assay. RESULTS In total 16 patients were colonized with K. aerogenes over the 3-month period and 13 patients remained asymptomatic or developed late-onset neonatal sepsis from another pathogen. Three patients developed necrotizing enterocolitis, 2 complicated by sepsis and 1 of them died. All symptomatic patients were premature infants with low birth weight. Genetic sequencing confirmed an outbreak with the same strain, all samples expressed the high-pathogenicity island, necessary for the production of yersiniabactin. Six exemplary cases were proven to produce yersiniabactin in vitro. CONCLUSION This is the first report of an outbreak of a yersiniabactin-producing K. aerogenes strain causing invasive infection in preterm infants. We hypothesize that, due to improved iron uptake, this strain was associated with higher virulence than non-yersiniabactin-producing strains. Extended search for virulence factors and genetic sequencing could be pivotal in the management of NICU outbreaks in the future.
Collapse
Affiliation(s)
| | | | - David Endress
- From the Department of Pediatrics and Adolescent Medicine
| | | | - Sören Schubert
- Max von Pettenkofer-Institute, Faculty of Medicine, LMU Munich, Germany
| | - Alexander Indra
- Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Marta Fudel
- Department of Hospital Hygiene, Klinik Ottakring, Vienna, Austria
| | - Thomas Frischer
- Sigmund Freud Private University, Sigmund Freud Platz 3, Vienna, Austria
| | | |
Collapse
|
5
|
Urban Wildlife Crisis: Australian Silver Gull Is a Bystander Host to Widespread Clinical Antibiotic Resistance. mSystems 2022; 7:e0015822. [PMID: 35469421 PMCID: PMC9238384 DOI: 10.1128/msystems.00158-22] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Australian silver gull is an urban-adapted species that frequents anthropogenic waste sites. The enterobacterial flora of synanthropic birds often carries antibiotic resistance genes. Whole-genome sequence analyses of 425 Escherichia coli isolates from cloacal swabs of chicks inhabiting three coastal sites in New South Wales, Australia, cultured on media supplemented with meropenem, cefotaxime, or ciprofloxacin are reported. Phylogenetically, over 170 antibiotic-resistant lineages from 96 sequence types (STs) representing all major phylogroups were identified. Remarkably, 25 STs hosted the carbapenemase gene blaIMP-4, sourced only from Five Islands. Class 1 integrons carrying blaIMP and blaOXA alongside blaCTX-M and qnrS were notable. Multiple plasmid types mobilized blaIMP-4 and blaOXA-1, and 121 isolates (28%) carried either a ColV-like (18%) or a pUTI89-like (10%) F virulence plasmid. Phylogenetic comparisons to human isolates provided evidence of interspecies transmission. Our study underscores the importance of bystander species in the transmission of antibiotic-resistant and pathogenic E. coli. IMPORTANCE By compiling various genomic and phenotypic data sets, we have provided one of the most comprehensive genomic studies of Escherichia coli isolates from the Australian silver gull, on media containing clinically relevant antibiotics. The analysis of genetic structures capturing antimicrobial resistance genes across three gull breeding colonies in New South Wales, Australia, and comparisons to clinical data have revealed a range of trackable genetic signatures that highlight the broad distribution of clinical antimicrobial resistance in more than 170 different lineages of E. coli. Conserved truncation sizes of the class 1 integrase gene, a key component of multiple-drug resistance structures in the Enterobacteriaceae, represent unique deletion events that are helping to link seemingly disparate isolates and highlight epidemiologically relevant data between wildlife and clinical sources. Notably, only the most anthropogenically affected of the three sites (Five Islands) was observed to host carbapenem resistance, indicating a potential reservoir among the sites sampled.
Collapse
|
6
|
Kim B, Kim JH, Lee Y. Virulence Factors Associated With Escherichia coli Bacteremia and Urinary Tract Infection. Ann Lab Med 2022; 42:203-212. [PMID: 34635614 PMCID: PMC8548248 DOI: 10.3343/alm.2022.42.2.203] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/05/2021] [Accepted: 09/13/2021] [Indexed: 01/03/2023] Open
Abstract
Background Extraintestinal pathogenic Escherichia coli (ExPEC) causes various infections, including urinary tract infection (UTI), sepsis, and neonatal meningitis. ExPEC strains have virulence factors (VFs) that facilitate infection by allowing bacterial cells to migrate into and multiply within the host. We compared the microbiological characteristics of ExPEC isolates from blood and urine specimens from UTI patients. Methods We conducted a single-center, prospective study in an 855-bed tertiary-care hospital in Korea. We consecutively recruited 80 hospitalized UTI patients with E. coli isolates, which were isolated from blood and/or urine, and urine alone between March 2019 and May 2020. We evaluated the 80 E. coli isolates for the presence of bacterial genes encoding the sequence types (STs), antimicrobial resistance, and VFs using whole-genome sequencing (WGS). Results We found no significant differences in STs, antimicrobial resistance patterns, or VFs between isolates from blood and urine specimens. ST131, a pandemic multidrug-resistant clone present in both blood and urine, was the most frequent ST (N=19/80, 24%), and ST131 isolates carried more virulence genes, especially, tsh and espC, than non-ST131 isolates. The virulence scores of the ST131 group and the ST69, ST95, and ST1193 groups differed significantly (P<0.05). Conclusions We found no STs and VFs associated with bacteremia in WGS data of E. coli isolates from UTI patients. ST131 was the most frequent ST among UTI causing isolates and carried more VF genes than non-ST131 isolates.
Collapse
Affiliation(s)
- Bongyoung Kim
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Jin-Hong Kim
- Department of Laboratory Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Yangsoon Lee
- Department of Laboratory Medicine, Hanyang University College of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Grevskott DH, Ghavidel FZ, Svanevik CS, Marathe NP. Resistance profiles and diversity of β-lactamases in Escherichia coli strains isolated from city-scale sewage surveillance in Bergen, Norway mimic clinical prevalence. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112788. [PMID: 34571418 DOI: 10.1016/j.ecoenv.2021.112788] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
The aim of this study was to examine antibiotic resistance profiles and diversity of β-lactamases in Escherichia coli present within the population and the potential spread of resistant E. coli into the receiving environment using city-scale sewage surveillance. In E. coli isolates from ECC plates without antibiotics from ten influent samples (n = 300), highest resistance was observed against ampicillin (16.6%), sulfamethoxazole (9.7%) and trimethoprim (9.0%), while in effluent samples (n = 262) it was against sulfamethoxazole (11.8%), ampicillin (11.5%) and tetracycline (8.8%). All isolates (n = 123) obtained on cefotaxime-containing plates were multidrug-resistant. Several clinically important antibiotic resistance genes (ARGs) were detected in 46 E. coli isolates subjected to whole-genome sequencing, including carbapenemases like NDM-6, VIM-1 and OXA-48-variant, as well as tigecycline resistance gene tet(X4). CTX-M-15 was the most prevalent (42.9%) extended-spectrum β-lactamase among cefotaxime-resistant isolates, followed by CTX-M-27 (31.4%) and CTX-M-14 (17.1%), resembling clinical prevalence in Norway. Most of the sequenced isolates carried other clinically relevant ARGs, such as dfrA17, sul1, sul2, tet(A), aph(6)-Id, aph(3'')-Ib and aadA5. Sixteen different sequence types (STs) were identified, including ST131 (39.1%), ST38 (10.9%) and ST69 (8.7%). One E. coli isolate belonging to novel ST (ST11874) carried multiple virulence factors including genotoxin, salmochelin, aerobactin and yersiniabactin, suggesting that this isolate has potential to cause health concerns in future. Our study reveals presence of clinically relevant ARGs like blaNDM-6 and tet(X4) in pathogenic strains, which have so far not been reported from the clinics in Norway. Our study may thus, provide a framework for population-based surveillance of antibiotic resistance.
Collapse
Affiliation(s)
- Didrik H Grevskott
- Department of Contaminants and Biohazards, Institute of Marine Research (IMR), Bergen, Norway
| | - Fatemeh Z Ghavidel
- Department of Contaminants and Biohazards, Institute of Marine Research (IMR), Bergen, Norway
| | - Cecilie S Svanevik
- Department of Contaminants and Biohazards, Institute of Marine Research (IMR), Bergen, Norway
| | - Nachiket P Marathe
- Department of Contaminants and Biohazards, Institute of Marine Research (IMR), Bergen, Norway.
| |
Collapse
|
8
|
Li D, Reid CJ, Kudinha T, Jarocki VM, Djordjevic SP. Genomic analysis of trimethoprim-resistant extraintestinal pathogenic Escherichia coli and recurrent urinary tract infections. Microb Genom 2020; 6:mgen000475. [PMID: 33206038 PMCID: PMC8116683 DOI: 10.1099/mgen.0.000475] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Urinary tract infections (UTIs) are the most common bacterial infections requiring medical attention and a leading justification for antibiotic prescription. Trimethoprim is prescribed empirically for uncomplicated cases. UTIs are primarily caused by extraintestinal pathogenic Escherichia coli (ExPEC) and ExPEC strains play a central role in disseminating antimicrobial-resistance genes worldwide. Here, we describe the whole-genome sequences of trimethoprim-resistant ExPEC and/or ExPEC from recurrent UTIs (67 in total) from patients attending a regional Australian hospital from 2006 to 2008. Twenty-three sequence types (STs) were observed, with ST131 predominating (28 %), then ST69 and ST73 (both 7 %). Co-occurrence of trimethoprim-resistance genes with genes conferring resistance to extended-spectrum β-lactams, heavy metals and quaternary ammonium ions was a feature of the ExPEC described here. Seven trimethoprim-resistance genes were identified, most commonly dfrA17 (38 %) and dfrA12 (18 %). An uncommon dfrB4 variant was also observed. Two blaCTX-M variants were identified - blaCTX-M-15 (16 %) and blaCTX-M-14 (10 %). The former was always associated with dfrA12, the latter with dfrA17, and all blaCTX-M genes co-occurred with chromate-resistance gene chrA. Eighteen class 1 integron structures were characterized, and chrA featured in eight structures; dfrA genes featured in seventeen. ST131 H30Rx isolates possessed distinct antimicrobial gene profiles comprising aac(3)-IIa, aac(6)-Ib-cr, aph(3')-Ia, aadA2, blaCTX-M-15, blaOXA-1 and dfrA12. The most common virulence-associated genes (VAGs) were fimH, fyuA, irp2 and sitA (all 91 %). Virulence profile clustering showed ST131 H30 isolates carried similar VAGs to ST73, ST405, ST550 and ST1193 isolates. The sole ST131 H27 isolate carried molecular predictors of enteroaggregative E. coli/ExPEC hybrid strains (aatA, aggR, fyuA). Seven isolates (10 %) carried VAGs suggesting ColV plasmid carriage. Finally, SNP analysis of serial UTI patients experiencing worsening sequelae demonstrated a high proportion of point mutations in virulence factors.
Collapse
Affiliation(s)
- Dmitriy Li
- Ithree Institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Cameron J. Reid
- Ithree Institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Timothy Kudinha
- NSW Health Pathology, Microbiology, Orange Hospital, Orange, NSW 2800, Australia
- School of Biomedical Sciences, Charles Sturt University, Orange, NSW 2800, Australia
| | - Veronica M. Jarocki
- Ithree Institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | | |
Collapse
|
9
|
Galardini M, Clermont O, Baron A, Busby B, Dion S, Schubert S, Beltrao P, Denamur E. Major role of iron uptake systems in the intrinsic extra-intestinal virulence of the genus Escherichia revealed by a genome-wide association study. PLoS Genet 2020; 16:e1009065. [PMID: 33112851 PMCID: PMC7592755 DOI: 10.1371/journal.pgen.1009065] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/20/2020] [Indexed: 11/18/2022] Open
Abstract
The genus Escherichia is composed of several species and cryptic clades, including E. coli, which behaves as a vertebrate gut commensal, but also as an opportunistic pathogen involved in both diarrheic and extra-intestinal diseases. To characterize the genetic determinants of extra-intestinal virulence within the genus, we carried out an unbiased genome-wide association study (GWAS) on 370 commensal, pathogenic and environmental strains representative of the Escherichia genus phylogenetic diversity and including E. albertii (n = 7), E. fergusonii (n = 5), Escherichia clades (n = 32) and E. coli (n = 326), tested in a mouse model of sepsis. We found that the presence of the high-pathogenicity island (HPI), a ~35 kbp gene island encoding the yersiniabactin siderophore, is highly associated with death in mice, surpassing other associated genetic factors also related to iron uptake, such as the aerobactin and the sitABCD operons. We confirmed the association in vivo by deleting key genes of the HPI in E. coli strains in two phylogenetic backgrounds. We then searched for correlations between virulence, iron capture systems and in vitro growth in a subset of E. coli strains (N = 186) previously phenotyped across growth conditions, including antibiotics and other chemical and physical stressors. We found that virulence and iron capture systems are positively correlated with growth in the presence of numerous antibiotics, probably due to co-selection of virulence and resistance. We also found negative correlations between virulence, iron uptake systems and growth in the presence of specific antibiotics (i.e. cefsulodin and tobramycin), which hints at potential “collateral sensitivities” associated with intrinsic virulence. This study points to the major role of iron capture systems in the extra-intestinal virulence of the genus Escherichia. Bacterial isolates belonging to the genus Escherichia can be human commensals but also opportunistic pathogens, with the ability to cause extra-intestinal infection. There is therefore the need to identify the genetic elements that favour extra-intestinal virulence, so that virulent bacterial isolates can be identified through genome analysis and potential treatment strategies be developed. To reduce the influence of host variability on virulence, we have used a mouse model of sepsis to characterize the virulence of 370 strains belonging to the genus Escherichia, for which whole genome sequences were also available. We have used a statistical approach called Genome-Wide Association Study (GWAS) to show how the presence of genes that encode for iron scavenging are significantly associated with the propensity of a bacterial isolate to cause extra-intestinal infections. Taking advantage of previously generated growth data on a subset of the strains and its correlation to virulence we generated hypothesis on the relationship between iron scavenging and growth in the presence of various antimicrobials, which could have implications for developing new treatment strategies.
Collapse
Affiliation(s)
- Marco Galardini
- EMBL-EBI, Wellcome Genome Campus, Cambridge, United Kingdom
- * E-mail: (MG); (ED)
| | | | | | - Bede Busby
- Genome Biology Unit, EMBL, Heidelberg, Germany
| | - Sara Dion
- Université de Paris, IAME, UMR1137, INSERM, Paris, France
| | - Sören Schubert
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Germany
| | - Pedro Beltrao
- EMBL-EBI, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Erick Denamur
- Université de Paris, IAME, UMR1137, INSERM, Paris, France
- AP-HP, Laboratoire de Génétique Moléculaire, Hôpital Bichat, Paris, France
- * E-mail: (MG); (ED)
| |
Collapse
|
10
|
Genomic Insight of VIM-harboring IncA Plasmid from a Clinical ST69 Escherichia coli Strain in Italy. Microorganisms 2020; 8:microorganisms8081232. [PMID: 32806766 PMCID: PMC7466171 DOI: 10.3390/microorganisms8081232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 11/21/2022] Open
Abstract
Background: VIM (Verona Integron-encoded Metallo-beta-lactamase) is a member of the Metallo-Beta-Lactamases (MBLs), and is able to hydrolyze all beta-lactams antibiotics, except for monobactams, and including carbapenems. Here we characterize a VIM-producing IncA plasmid isolated from a clinical ST69 Escherichia coli strain from an Italian Long-Term Care Facility (LTCF) inpatient. Methods: An antimicrobial susceptibility test and conjugation assay were carried out, and the transferability of the blaVIM-type gene was confirmed in the transconjugant. Whole-genome sequencing (WGS) of the strain 550 was performed using the Sequel I platform. Genome assembly was performed using “Microbial Assembly”. Genomic analysis was conducted by uploading the contigs to ResFinder and PlasmidFinder databases. Results: Assembly resulted in three complete circular contigs: the chromosome (4,962,700 bp), an IncA plasmid (p550_IncA_VIM_1; 162,608 bp), harboring genes coding for aminoglycoside resistance (aac(6′)-Ib4, ant(3″)-Ia, aph(3″)-Ib, aph(3′)-XV, aph(6)-Id), beta-lactam resistance (blaSHV-12, blaVIM-1), macrolides resistance (mph(A)), phenicol resistance (catB2), quinolones resistance (qnrS1), sulphonamide resistance (sul1, sul2), and trimethoprim resistance (dfrA14), and an IncK/Z plasmid (p550_IncB_O_K_Z; 100,306 bp), free of antibiotic resistance genes. Conclusions: The increase in reports of IncA plasmids bearing different antimicrobial resistance genes highlights the overall important role of IncA plasmids in disseminating carbapenemase genes, with a preference for the blaVIM-1 gene in Italy.
Collapse
|
11
|
Urinary tract infections: microbial pathogenesis, host-pathogen interactions and new treatment strategies. Nat Rev Microbiol 2020; 18:211-226. [PMID: 32071440 DOI: 10.1038/s41579-020-0324-0] [Citation(s) in RCA: 275] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2020] [Indexed: 12/14/2022]
Abstract
Urinary tract infections (UTIs) are common, recurrent infections that can be mild to life-threatening. The continued emergence of antibiotic resistance, together with our increasing understanding of the detrimental effects conferred by broad-spectrum antibiotic use on the health of the beneficial microbiota of the host, has underscored the weaknesses in our current treatment paradigm for UTIs. In this Review, we discuss how recent microbiological, structural, genetic and immunological studies have expanded our understanding of host-pathogen interactions during UTI pathogenesis. These basic scientific findings have the potential to shift the strategy for UTI treatment away from broad-spectrum antibiotics targeting conserved aspects of bacterial replication towards pathogen-specific antibiotic-sparing therapeutics that target core determinants of bacterial virulence at the host-pathogen interface.
Collapse
|
12
|
Carpenter KC, Hakenjos JM, Fry CD, Nemzek JA. The Influence of Pain and Analgesia in Rodent Models of Sepsis. Comp Med 2019; 69:546-554. [PMID: 31213216 PMCID: PMC6935706 DOI: 10.30802/aalas-cm-19-000004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/15/2019] [Accepted: 04/01/2019] [Indexed: 12/17/2022]
Abstract
Sepsis is a multifaceted host response to infection that dramatically affects patient outcomes and the cost of health care. Animal models are necessary to replicate the complexity and heterogeneity of clinical sepsis. However, these models entail a high risk of pain and distress due to tissue trauma, inflammation, endotoxin-mediated hyperalgesia, and other mechanisms. Several recent studies and initiatives address the need to improve the welfare of animals through analgesics and standardize the models used in preclinical sepsis research. Ultimately, the goal is to provide high-fidelity, humane animal models that better replicate the clinical course of sepsis, to provide more effective translation and advance therapeutic discovery. The purpose of this review is to discuss the current understanding of the roles of pain and analgesia in rodent models of sepsis. The current definitions of sepsis along with an overview of pain in human sepsis are described. Finally, welfare concerns associated with animal models of sepsis and the most recent considerations for relief of pain and distress are reviewed.
Collapse
Affiliation(s)
- Kelsey C Carpenter
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Michigan
| | - John M Hakenjos
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Christopher D Fry
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Jean A Nemzek
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Michigan;,
| |
Collapse
|