1
|
Deng Y, Liang X, Zhao L, Zhou X, Liu J, Li Z, Chen S, Xiao G. Pogostemon cablin Acts as a Key Regulator of NF- κB Signaling and Has a Potent Therapeutic Effect on Intestinal Mucosal Inflammation. Mediators Inflamm 2025; 2025:9000672. [PMID: 40331148 PMCID: PMC12052453 DOI: 10.1155/mi/9000672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/29/2025] [Indexed: 05/08/2025] Open
Abstract
Persistent intestinal inflammation is a major contributor to various diseases, including digestive disorders, immune dysregulation, and cancer. The NF-κB signaling pathway is pivotal in the inflammatory response of intestinal cells, regulating the secretion of inflammatory factors, mediating signal transduction, and activating receptors. In colitis, NF-κB signaling and its effector molecules are excessively activated by various stimuli, leading to overexpression of inflammatory mediators and immune regulators. Colitis, an inflammation of the intestinal mucosa, underlies many intestinal diseases, with increasing incidence. Traditional treatments such as glucocorticoids and nonsteroidal antiinflammatory drugs have significant limitations and side effects. Pogostemon cablin, a traditional Chinese medicine and food, is widely used in food, spices, and pharmaceuticals. Studies have demonstrated its positive therapeutic effects on intestinal inflammation, primarily through regulation of the NF-κB signaling pathway. Moreover, P. cablin and its active components exhibit pharmacological activities such as antiapoptotic, antioxidant, and antitumor effects. This review summarizes the original research on treating intestinal mucosal inflammation via NF-κB signaling regulation using P. cablin and its active components, providing new insights for colitis treatment.
Collapse
Affiliation(s)
- Yuqing Deng
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Lu zhou 646000, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, Affiliated Traditional Medicine Hospital, Southwest Medical University, Lu Zhou 646000, China
| | - Xin Liang
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Lu zhou 646000, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, Affiliated Traditional Medicine Hospital, Southwest Medical University, Lu Zhou 646000, China
| | - Long Zhao
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Lu zhou 646000, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, Affiliated Traditional Medicine Hospital, Southwest Medical University, Lu Zhou 646000, China
| | - Xin Zhou
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Lu zhou 646000, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, Affiliated Traditional Medicine Hospital, Southwest Medical University, Lu Zhou 646000, China
| | - Jianqin Liu
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Lu zhou 646000, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, Affiliated Traditional Medicine Hospital, Southwest Medical University, Lu Zhou 646000, China
| | - Zhi Li
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Lu zhou 646000, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, Affiliated Traditional Medicine Hospital, Southwest Medical University, Lu Zhou 646000, China
- School of Integrated Traditional Chinese and Western Clinical Medicine, North Sichuan Medical College, NanChong 637100, Sichuan, China
| | - Shanshan Chen
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Lu zhou 646000, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, Affiliated Traditional Medicine Hospital, Southwest Medical University, Lu Zhou 646000, China
| | - Guohui Xiao
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Lu zhou 646000, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, Affiliated Traditional Medicine Hospital, Southwest Medical University, Lu Zhou 646000, China
| |
Collapse
|
2
|
Mukherjee T, Kumar N, Chawla M, Philpott DJ, Basak S. The NF-κB signaling system in the immunopathogenesis of inflammatory bowel disease. Sci Signal 2024; 17:eadh1641. [PMID: 38194476 DOI: 10.1126/scisignal.adh1641] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024]
Abstract
Inflammatory bowel disease (IBD) is an idiopathic, chronic condition characterized by episodes of inflammation in the gastrointestinal tract. The nuclear factor κB (NF-κB) system describes a family of dimeric transcription factors. Canonical NF-κB signaling is stimulated by and enhances inflammation, whereas noncanonical NF-κB signaling contributes to immune organogenesis. Dysregulation of NF-κB factors drives various inflammatory pathologies, including IBD. Signals from many immune sensors activate NF-κB subunits in the intestine, which maintain an equilibrium between local microbiota and host responses. Genetic association studies of patients with IBD and preclinical mouse models confirm the importance of the NF-κB system in host defense in the gut. Other studies have investigated the roles of these factors in intestinal barrier function and in inflammatory gut pathologies associated with IBD. NF-κB signaling modulates innate and adaptive immune responses and the production of immunoregulatory proteins, anti-inflammatory cytokines, antimicrobial peptides, and other tolerogenic factors in the intestine. Furthermore, genetic studies have revealed critical cell type-specific roles for NF-κB proteins in intestinal immune homeostasis, inflammation, and restitution that contribute to the etiopathology of IBD-associated manifestations. Here, we summarize our knowledge of the roles of these NF-κB pathways, which are activated in different intestinal cell types by specific ligands, and their cross-talk, in fueling aberrant intestinal inflammation. We argue that an in-depth understanding of aberrant immune signaling mechanisms may hold the key to identifying predictive or prognostic biomarkers and developing better therapeutics against inflammatory gut pathologies.
Collapse
Affiliation(s)
- Tapas Mukherjee
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Naveen Kumar
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Meenakshi Chawla
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Soumen Basak
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
3
|
Li JY, Xiao J, Gao M, Zhou HF, Fan H, Sun F, Cui DD. IRF/Type I IFN signaling serves as a valuable therapeutic target in the pathogenesis of inflammatory bowel disease. Int Immunopharmacol 2021; 92:107350. [PMID: 33444921 DOI: 10.1016/j.intimp.2020.107350] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 01/03/2023]
Abstract
Inflammatory bowel disease (IBD) is an autoimmune disease characterized by unresolved colitis and epithelial injury. Intestinal microbiota and its interaction with immune system are critical etiologic factors. In response to gut virome and bacteria derived nucleic acid, interferon regulatory factors (IRFs) are activated to promote the production of cytokines, including type I interferons (IFN-Is), to help maintain intestinal homeostasis under both physiological and pathophysiological conditions. However, derailed IRF/IFN-I pathway other-wisely contributes to the progression of IBD with distinct IRF member exerting differential regulatory effect. Here, we summarize the recent advances regarding the role of IRF/IFN-I pathway in the development of IBD. We emphasize that IFN-I is a double-edged sword in IBD pathogenesis, as IFN-Is are protective in acute colitis while becoming pro-inflammatory during the chronic recovery phase. Besides, the functional outcome of IRFs is diverse and complex, which hinges on the cell types affected and the presence of other immune mediators. All in all, IRF/IFN-I pathway serves as a versatile regulator in IBD pathogenesis and holds the potential for therapeutic interventions.
Collapse
Affiliation(s)
- Jun-Yi Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Xiao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Gao
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hai-Feng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Sun
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Dan-Dan Cui
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Identification of the role of toxin B in the virulence of Clostridioides difficile based on integrated bioinformatics analyses. Int Microbiol 2020; 23:575-587. [PMID: 32388701 DOI: 10.1007/s10123-020-00128-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/03/2020] [Accepted: 04/13/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE Clostridioides difficile toxin B (TcdB) plays a critical role in C. difficile infection (CDI), a common and costly healthcare-associated disease. The aim of the current study was to explore the intracellular and potent systemic effects of TcdB on human colon epithelial cells utilizing Gene Expression Omnibus and bioinformatic methods. METHODS Two datasets (GSE63880 and GSE29008) were collected to extract data components of mRNA of TcdB-treated human colon epithelial cells; "limma" package of "R" software was used to screen the differential genes, and "pheatmap" package was applied to construct heat maps for the differential genes; Metascape website was utilized for protein-protein interaction network and Molecular Complex Detection analysis, and Genome Ontology (GO) was used to analyze the selected differential genes. Quantitative real-time PCR (qRT-PCR) and Western blot were performed to validate the expression of hub genes. RESULTS GO terms involved in DNA replication and cell cycle were identified significantly enriched in TcdB-treated human colon epithelial cells. Moreover, the decreased expression of DNA replication-related genes, MCM complex, and CDC45 in C. difficile (TcdA-/TcdB+)-infected Caco-2 cells were validated via qRT-PCR and Western blot assays. CONCLUSIONS In conclusion, the integrated analysis of different gene expression datasets allowed us to identify a set of genes and GO terms underlying the mechanisms of CDI induced by TcdB. It would aid in understanding of the molecular mechanisms underlying TcdB-exposed colon epithelial cells and provide the basis for developing diagnosis biomarkers, treatment, and prevention strategies.
Collapse
|