1
|
Zhang Z, Mei X, Wang H, Gong H, Chen R, Liu B, Wei Y, Gan Y, Yuan T, Wu Y, Shao G, Xiong Q, Zhang C, Feng Z. Long non-coding RNA MMTP mediates necroptosis in alveolar macrophages during Mycoplasma hyopneumoniae infection by enhancing TNF-α transcription. Int J Biol Macromol 2025; 288:138649. [PMID: 39674476 DOI: 10.1016/j.ijbiomac.2024.138649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/01/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
Mycoplasma hyopneumoniae (M. hyo), a major respiratory pathogen in swine, causes chronic respiratory diseases characterized by severe lung inflammation. Alveolar macrophages, which serve as the first line of defense in the respiratory immune system, undergo necroptosis in response to M. hyo infection. This form of programmed cell death amplifies pulmonary inflammation and leads to impaired lung function, yet the precise molecular mechanisms remain poorly understood. Long non-coding RNAs (lncRNAs), known for their regulatory roles in transcriptional and epigenetic processes, have been linked to various inflammatory and infectious diseases. In this study, we identified a novel lncRNA, lncRNA-MMTP, as a critical regulator of necroptosis during M. hyo infection. Mechanistically, lncRNA-MMTP interacts with the transcription factor TFII-I to enhance c-Fos promoter activity, leading to increased transcription of TNF-α and activation of the RIPK1/RIPK3/MLKL necroptotic pathway. Importantly, knockdown of lncRNA-MMTP or inhibition of TFII-I significantly reduced TNF-α levels and necroptosis in alveolar macrophages. These findings not only elucidate a new molecular pathway underlying M. hyo-induced lung inflammation but also suggest potential therapeutic targets for managing pathogen-induced inflammatory responses in the respiratory system.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China; School of Animal Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xiuzhen Mei
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China; School of Animal Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China; Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Hanfei Gong
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China; School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Rong Chen
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
| | - Beibei Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
| | - Yanna Wei
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
| | - Yuan Gan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
| | - Ting Yuan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
| | - Yuzi Wu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
| | - Guoqing Shao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
| | - Qiyan Xiong
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
| | - Chao Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Zhixin Feng
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China; School of Animal Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
2
|
Jiang B, Zhang Y, Li G, Quan Y, Shu J, Feng H, He Y. Research Progress on Immune Evasion of Mycoplasma hyopneumoniae. Microorganisms 2024; 12:1439. [PMID: 39065207 PMCID: PMC11279058 DOI: 10.3390/microorganisms12071439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/07/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
As the main pathogen associated with enzootic pneumonia (EP), Mycoplasma hyopneumoniae (Mhp) is globally prevalent and inflicts huge financial losses on the worldwide swine industry each year. However, the pathogenicity of Mhp has not been fully explained to date. Mhp invasion usually leads to long-term chronic infection and persistent lung colonization, suggesting that Mhp has developed effective immune evasion strategies. In this review, we offer more detailed information than was previously available about its immune evasion mechanisms through a systematic summary of the extant findings. Genetic mutation and post-translational protein processing confer Mhp the ability to alter its surface antigens. With the help of adhesins, Mhp can achieve cell invasion. And Mhp can modulate the host immune system through the induction of inflammation, incomplete autophagy, apoptosis, and the suppression of immune cell or immune effector activity. Furthermore, we offer the latest views on how we may treat Mhp infections and develop novel vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yulong He
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (B.J.); (Y.Z.); (G.L.); (Y.Q.); (J.S.); (H.F.)
| |
Collapse
|
3
|
Liu W, Jiang P, Song T, Yang K, Yuan F, Gao T, Liu Z, Li C, Guo R, Xiao S, Tian Y, Zhou D. A Recombinant Chimera Vaccine Composed of LTB and Mycoplasma hyopneumoniae Antigens P97R1, mhp390 and P46 Elicits Cellular Immunologic Response in Mice. Vaccines (Basel) 2023; 11:1291. [PMID: 37631860 PMCID: PMC10457768 DOI: 10.3390/vaccines11081291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Mycoplasma hyopneumoniae is the etiological agent of porcine enzootic pneumonia (EP), leading to a mild and chronic pneumonia in swine. Relative control has been attained through active vaccination programs, but porcine enzootic pneumonia remains a significant economic challenge in the swine industry. Cellular immunity plays a key role in the prevention and control of porcine enzootic pneumonia. Therefore, the development of a more efficient vaccine that confers a strong immunity against M. hyopneumoniae is necessary. In this study, a multi-antigen chimera (L9m6) was constructed by combining the heat-labile enterotoxin B subunit (LTB) with three antigens of M. hyopneumoniae (P97R1, mhp390, and P46), and its immunogenic and antigenic properties were assessed in a murine model. In addition, we compared the effect of individual administration and multiple-fusion of these antigens. The chimeric multi-fusion vaccine induced significant cellular immune responses and high production of IgG and IgM antibodies against M. hyopneumoniae. Collectively, our data suggested that rL9m6 chimera exhibits potential as a viable vaccine candidate for the prevention and control of porcine enzootic pneumonia.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (W.L.); (P.J.); (K.Y.); (F.Y.); (T.G.); (Z.L.); (C.L.); (R.G.)
| | - Peizhao Jiang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (W.L.); (P.J.); (K.Y.); (F.Y.); (T.G.); (Z.L.); (C.L.); (R.G.)
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;
| | - Tao Song
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;
| | - Keli Yang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (W.L.); (P.J.); (K.Y.); (F.Y.); (T.G.); (Z.L.); (C.L.); (R.G.)
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (W.L.); (P.J.); (K.Y.); (F.Y.); (T.G.); (Z.L.); (C.L.); (R.G.)
| | - Ting Gao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (W.L.); (P.J.); (K.Y.); (F.Y.); (T.G.); (Z.L.); (C.L.); (R.G.)
| | - Zewen Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (W.L.); (P.J.); (K.Y.); (F.Y.); (T.G.); (Z.L.); (C.L.); (R.G.)
| | - Chang Li
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (W.L.); (P.J.); (K.Y.); (F.Y.); (T.G.); (Z.L.); (C.L.); (R.G.)
| | - Rui Guo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (W.L.); (P.J.); (K.Y.); (F.Y.); (T.G.); (Z.L.); (C.L.); (R.G.)
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Yongxiang Tian
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (W.L.); (P.J.); (K.Y.); (F.Y.); (T.G.); (Z.L.); (C.L.); (R.G.)
| | - Danna Zhou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (W.L.); (P.J.); (K.Y.); (F.Y.); (T.G.); (Z.L.); (C.L.); (R.G.)
| |
Collapse
|
4
|
Pageaut H, Lacouture S, Lehoux M, Marois-Créhan C, Segura M, Gottschalk M. Interactions of Mycoplasma hyopneumoniae and/or Mycoplasma hyorhinis with Streptococcus suis Serotype 2 Using In Vitro Co-Infection Models with Swine Cells. Pathogens 2023; 12:866. [PMID: 37513713 PMCID: PMC10383509 DOI: 10.3390/pathogens12070866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Bacterial and/or viral co-infections are very common in swine production and cause severe economic losses. Mycoplasma hyopneumoniae, Mycoplasma hyorhinis and Streptococcus suis are pathogenic bacteria that may be found simultaneously in the respiratory tracts of pigs. In the present study, the interactions of S. suis with epithelial and phagocytic cells in the presence or absence of a pre-infection with M. hyopneumoniae and/or M. hyorhinis were studied. Results showed relatively limited interactions between these pathogens. A previous infection with one or both mycoplasmas did not influence the adhesion or invasion properties of S. suis in epithelial cells or its resistance to phagocytosis (including intracellular survival) by macrophages and dendritic cells. The most important effect observed during the co-infection was a clear increment in toxicity for the cells. An increase in the relative expression of the pro-inflammatory cytokines IL-6 and CXCL8 was also observed; however, this was the consequence of an additive effect due to the presence of different pathogens rather than a synergic effect. It may be hypothesized that if one or both mycoplasmas are present along with S. suis in the lower respiratory tract at the same time, then increased damage to epithelial cells and phagocytes, as well as an increased release of pro-inflammatory cytokines, may eventually enhance the invasive properties of S. suis. However, more studies should be carried out to confirm this hypothesis.
Collapse
Affiliation(s)
- Héloïse Pageaut
- Swine and Poultry Infectious Diseases Research Center (CRIPA) and Groupe de Recherche sur les Maladies Infectieuses en Production Animale, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Sonia Lacouture
- Swine and Poultry Infectious Diseases Research Center (CRIPA) and Groupe de Recherche sur les Maladies Infectieuses en Production Animale, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Mélanie Lehoux
- Swine and Poultry Infectious Diseases Research Center (CRIPA) and Groupe de Recherche sur les Maladies Infectieuses en Production Animale, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Corinne Marois-Créhan
- Ploufragan-Plouzané-Niort Laboratory, Mycoplasmology Bacteriology and Antimicrobial Resistance Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22 440 Ploufragan, France
| | - Mariela Segura
- Swine and Poultry Infectious Diseases Research Center (CRIPA) and Groupe de Recherche sur les Maladies Infectieuses en Production Animale, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Marcelo Gottschalk
- Swine and Poultry Infectious Diseases Research Center (CRIPA) and Groupe de Recherche sur les Maladies Infectieuses en Production Animale, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
5
|
Souza dos Santos P, Paes JA, Del Prá Netto Machado L, Paludo GP, Zaha A, Ferreira HB. Differential domains and endoproteolytic processing in dominant surface proteins of unknown function from Mycoplasma hyopneumoniae and Mycoplasma flocculare. Heliyon 2023; 9:e16141. [PMID: 37251846 PMCID: PMC10213202 DOI: 10.1016/j.heliyon.2023.e16141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 04/28/2023] [Accepted: 05/06/2023] [Indexed: 05/31/2023] Open
Abstract
Mycoplasma hyopneumoniae causes porcine enzootic pneumonia (PEP), a chronic respiratory disease that leads to severe economic losses in the pig industry. Swine infection and PEP development depend on the adhesion of the pathogen to the swine respiratory tract and the host immune response, but these and other disease determinants are not fully understood. For instance, M. hyopneumoniae has a large repertoire of proteins of unknown function (PUFs) and some of them are abundant in the cell surface, where they likely mediate so far unknown pathogen-host interactions. Moreover, these surface PUFs may undergo endoproteolytic processing to generate larger repertoires of proteoforms to further complicate this scenario. Here, we investigated the five PUFs more represented on the surface of M. hyopneumoniae pathogenic strain 7448 in comparison with their orthologs from the nonpathogenic M. hyopneumoniae J strain and the closely related commensal species Mycoplasma flocculare. Comparative in silico analyses of deduced amino acid sequences and proteomic data identified differential domains, disordered regions and repeated motifs. We also provide evidence of differential endoproteolytic processing and antigenicity. Phylogenetic analyses were also performed with ortholog sequences, showing higher conservation of three of the assessed PUFs among Mycoplasma species related to respiratory diseases. Overall, our data point out to M. hyopneumoniae surface-dominant PUFs likely associated with pathogenicity.
Collapse
Affiliation(s)
- Priscila Souza dos Santos
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
| | - Jéssica Andrade Paes
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
| | - Lais Del Prá Netto Machado
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
| | - Gabriela Prado Paludo
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
| | - Arnaldo Zaha
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
- Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
- Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre, Brazil
| | - Henrique Bunselmeyer Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
- Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
- Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre, Brazil
| |
Collapse
|
6
|
Liu W, Jiang P, Yang K, Song Q, Yuan F, Liu Z, Gao T, Zhou D, Guo R, Li C, Sun P, Tian Y. Mycoplasma hyopneumoniae Infection Activates the NOD1 Signaling Pathway to Modulate Inflammation. Front Cell Infect Microbiol 2022; 12:927840. [PMID: 35873172 PMCID: PMC9304885 DOI: 10.3389/fcimb.2022.927840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/20/2022] [Indexed: 11/28/2022] Open
Abstract
Mycoplasma hyopneumoniae is a highly contagious pathogen causing porcine enzootic pneumonia, which elicits prolonged inflammatory response modulated by pattern recognition receptors (PRRs). Although significant advances have been achieved in understanding the Toll-Like receptors that recognize M. hyopneumoniae, the role of nucleotide-binding oligomerization domain 1 (NOD1) in M. hyopneumoniae infected cells remains poorly understood. This study revealed that M. hyopneumoniae activates the NOD1-RIP2 pathway and is co-localized with host NOD1 during infection. siRNA knockdown of NOD1 significantly impaired the TRIF and MYD88 pathway and blocked the activation of TNF-α. In contrast, NOD1 overexpression significantly suppressed M. hyopneumoniae proliferation. Furthermore, we for the first time investigated the interaction between M. hyopneumoniae mhp390 and NOD1 receptor, and the results suggested that mhp390 and NOD1 are possibly involved in the recognition of M. hyopneumoniae. These findings may improve our understanding of the interaction between PRRs and M. hyopneumoniae and the function of NOD1 in host defense against M. hyopneumoniae infection.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Pengcheng Jiang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Keli Yang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Qiqi Song
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Zewen Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Ting Gao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Danna Zhou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Rui Guo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Chang Li
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Pei Sun
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- *Correspondence: Yongxiang Tian, ; Pei Sun,
| | - Yongxiang Tian
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China
- *Correspondence: Yongxiang Tian, ; Pei Sun,
| |
Collapse
|
7
|
Santos-Junior MN, Neves WS, Santos RS, Almeida PP, Fernandes JM, Guimarães BCDB, Barbosa MS, da Silva LSC, Gomes CP, Sampaio BA, Rezende IDS, Correia TML, Neres NSDM, Campos GB, Bastos BL, Timenetsky J, Marques LM. Heterologous Expression, Purification, and Immunomodulatory Effects of Recombinant Lipoprotein GUDIV-103 Isolated from Ureaplasma diversum. Microorganisms 2022; 10:microorganisms10051032. [PMID: 35630474 PMCID: PMC9147684 DOI: 10.3390/microorganisms10051032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 02/06/2023] Open
Abstract
Ureaplasma diversum is a bacterial pathogen that infects cattle and can cause severe inflammation of the genital and reproductive systems. Lipid-associated membrane proteins (LAMPs), including GUDIV-103, are the main virulence factors in this bacterium. In this study, we heterologously expressed recombinant GUDIV-103 (rGUDIV-103) in Escherichia coli, purified it, and evaluated its immunological reactivity and immunomodulatory effects in bovine peripheral blood mononuclear cells (PBMCs). Samples from rabbits inoculated with purified rGUDIV-103 were analysed using indirect enzyme-linked immunosorbent assay and dot blotting to confirm polyclonal antibody production and assess kinetics, respectively. The expression of this lipoprotein in field isolates was confirmed via Western blotting with anti-rGUDIV-103 serum and hydrophobic or hydrophilic proteins from 42 U. diversum strains. Moreover, the antibodies produced against the U. diversum ATCC 49783 strain recognised rGUDIV-103. The mitogenic potential of rGUDIV-103 was evaluated using a lymphoproliferation assay in 5(6)-carboxyfluorescein diacetate succinimidyl ester−labelled bovine PBMCs, where it induced lymphocyte proliferation. Quantitative polymerase chain reaction analysis revealed that the expression of interleukin-1β, toll-like receptor (TLR)-α, TLR2, TLR4, inducible nitric oxide synthase, and caspase-3−encoding genes increased more in rGUDIV-103−treated PBMCs than in untreated cells (p < 0.05). Treating PBMCs with rGUDIV-103 increased nitric oxide and hydrogen peroxide levels. The antigenic and immunogenic properties of rGUDIV-103 suggested its suitability for immunobiological application.
Collapse
Affiliation(s)
- Manoel Neres Santos-Junior
- Department of Biointeraction, Multidisciplinary Institute of Health, Federal University of Bahia, Vitória da Conquista 40170-110, Brazil; (M.N.S.-J.); (W.S.N.); (R.S.S.); (J.M.F.); (T.M.L.C.); (N.S.d.M.N.)
- Department of Biology, and Biotechnology of Microorganisms, State University of Santa Cruz (UESC), Ilhéus 45662-900, Brazil; (B.C.d.B.G.); (L.S.C.d.S.); (C.P.G.); (B.A.S.); (G.B.C.); (B.L.B.)
| | - Wanderson Souza Neves
- Department of Biointeraction, Multidisciplinary Institute of Health, Federal University of Bahia, Vitória da Conquista 40170-110, Brazil; (M.N.S.-J.); (W.S.N.); (R.S.S.); (J.M.F.); (T.M.L.C.); (N.S.d.M.N.)
| | - Ronaldo Silva Santos
- Department of Biointeraction, Multidisciplinary Institute of Health, Federal University of Bahia, Vitória da Conquista 40170-110, Brazil; (M.N.S.-J.); (W.S.N.); (R.S.S.); (J.M.F.); (T.M.L.C.); (N.S.d.M.N.)
| | - Palloma Porto Almeida
- Bioinformatics and Computational Biology Lab, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro 20231-050, Brazil;
| | - Janaina Marinho Fernandes
- Department of Biointeraction, Multidisciplinary Institute of Health, Federal University of Bahia, Vitória da Conquista 40170-110, Brazil; (M.N.S.-J.); (W.S.N.); (R.S.S.); (J.M.F.); (T.M.L.C.); (N.S.d.M.N.)
| | - Bruna Carolina de Brito Guimarães
- Department of Biology, and Biotechnology of Microorganisms, State University of Santa Cruz (UESC), Ilhéus 45662-900, Brazil; (B.C.d.B.G.); (L.S.C.d.S.); (C.P.G.); (B.A.S.); (G.B.C.); (B.L.B.)
| | - Maysa Santos Barbosa
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, Brazil; (M.S.B.); (I.d.S.R.); (J.T.)
| | - Lucas Santana Coelho da Silva
- Department of Biology, and Biotechnology of Microorganisms, State University of Santa Cruz (UESC), Ilhéus 45662-900, Brazil; (B.C.d.B.G.); (L.S.C.d.S.); (C.P.G.); (B.A.S.); (G.B.C.); (B.L.B.)
| | - Camila Pacheco Gomes
- Department of Biology, and Biotechnology of Microorganisms, State University of Santa Cruz (UESC), Ilhéus 45662-900, Brazil; (B.C.d.B.G.); (L.S.C.d.S.); (C.P.G.); (B.A.S.); (G.B.C.); (B.L.B.)
| | - Beatriz Almeida Sampaio
- Department of Biology, and Biotechnology of Microorganisms, State University of Santa Cruz (UESC), Ilhéus 45662-900, Brazil; (B.C.d.B.G.); (L.S.C.d.S.); (C.P.G.); (B.A.S.); (G.B.C.); (B.L.B.)
| | - Izadora de Souza Rezende
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, Brazil; (M.S.B.); (I.d.S.R.); (J.T.)
| | - Thiago Macedo Lopes Correia
- Department of Biointeraction, Multidisciplinary Institute of Health, Federal University of Bahia, Vitória da Conquista 40170-110, Brazil; (M.N.S.-J.); (W.S.N.); (R.S.S.); (J.M.F.); (T.M.L.C.); (N.S.d.M.N.)
| | - Nayara Silva de Macedo Neres
- Department of Biointeraction, Multidisciplinary Institute of Health, Federal University of Bahia, Vitória da Conquista 40170-110, Brazil; (M.N.S.-J.); (W.S.N.); (R.S.S.); (J.M.F.); (T.M.L.C.); (N.S.d.M.N.)
| | - Guilherme Barreto Campos
- Department of Biology, and Biotechnology of Microorganisms, State University of Santa Cruz (UESC), Ilhéus 45662-900, Brazil; (B.C.d.B.G.); (L.S.C.d.S.); (C.P.G.); (B.A.S.); (G.B.C.); (B.L.B.)
| | - Bruno Lopes Bastos
- Department of Biology, and Biotechnology of Microorganisms, State University of Santa Cruz (UESC), Ilhéus 45662-900, Brazil; (B.C.d.B.G.); (L.S.C.d.S.); (C.P.G.); (B.A.S.); (G.B.C.); (B.L.B.)
| | - Jorge Timenetsky
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, Brazil; (M.S.B.); (I.d.S.R.); (J.T.)
| | - Lucas Miranda Marques
- Department of Biointeraction, Multidisciplinary Institute of Health, Federal University of Bahia, Vitória da Conquista 40170-110, Brazil; (M.N.S.-J.); (W.S.N.); (R.S.S.); (J.M.F.); (T.M.L.C.); (N.S.d.M.N.)
- Department of Biology, and Biotechnology of Microorganisms, State University of Santa Cruz (UESC), Ilhéus 45662-900, Brazil; (B.C.d.B.G.); (L.S.C.d.S.); (C.P.G.); (B.A.S.); (G.B.C.); (B.L.B.)
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, Brazil; (M.S.B.); (I.d.S.R.); (J.T.)
- Correspondence:
| |
Collapse
|
8
|
Dawood A, Algharib SA, Zhao G, Zhu T, Qi M, Delai K, Hao Z, Marawan MA, Shirani I, Guo A. Mycoplasmas as Host Pantropic and Specific Pathogens: Clinical Implications, Gene Transfer, Virulence Factors, and Future Perspectives. Front Cell Infect Microbiol 2022; 12:855731. [PMID: 35646746 PMCID: PMC9137434 DOI: 10.3389/fcimb.2022.855731] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/04/2022] [Indexed: 12/28/2022] Open
Abstract
Mycoplasmas as economically important and pantropic pathogens can cause similar clinical diseases in different hosts by eluding host defense and establishing their niches despite their limited metabolic capacities. Besides, enormous undiscovered virulence has a fundamental role in the pathogenesis of pathogenic mycoplasmas. On the other hand, they are host-specific pathogens with some highly pathogenic members that can colonize a vast number of habitats. Reshuffling mycoplasmas genetic information and evolving rapidly is a way to avoid their host's immune system. However, currently, only a few control measures exist against some mycoplasmosis which are far from satisfaction. This review aimed to provide an updated insight into the state of mycoplasmas as pathogens by summarizing and analyzing the comprehensive progress, current challenge, and future perspectives of mycoplasmas. It covers clinical implications of mycoplasmas in humans and domestic and wild animals, virulence-related factors, the process of gene transfer and its crucial prospects, the current application and future perspectives of nanotechnology for diagnosing and curing mycoplasmosis, Mycoplasma vaccination, and protective immunity. Several questions remain unanswered and are recommended to pay close attention to. The findings would be helpful to develop new strategies for basic and applied research on mycoplasmas and facilitate the control of mycoplasmosis for humans and various species of animals.
Collapse
Affiliation(s)
- Ali Dawood
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
- Hubei Hongshan Laboratory, Wuhan, China
| | - Samah Attia Algharib
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, HZAU, Wuhan, China
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Gang Zhao
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Tingting Zhu
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Mingpu Qi
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Kong Delai
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhiyu Hao
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Marawan A. Marawan
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- Infectious Diseases, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Ihsanullah Shirani
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- Para-Clinic Department, Faculty of Veterinary Medicine, Jalalabad, Afghanistan
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
9
|
Barbosa MS, Marques LM, Timenetsky J, Rosengarten R, Spergser J, Chopra-Dewasthaly R. Host cell interactions of novel antigenic membrane proteins of Mycoplasma agalactiae. BMC Microbiol 2022; 22:93. [PMID: 35395771 PMCID: PMC8991494 DOI: 10.1186/s12866-022-02512-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/30/2022] [Indexed: 11/30/2022] Open
Abstract
Background Mycoplasma agalactiae is the main etiological agent of Contagious Agalactia syndrome of small ruminants notifiable to the World Organization for Animal Health. Despite serious economic losses, successful vaccines are unavailable, largely because its colonization and invasion factors are not well understood. This study evaluates the role of two recently identified antigenic proteins (MAG_1560, MAG_6130) and the cytadhesin P40 in pathogenicity related phenotypes. Results Adhesion to HeLa and sheep primary mammary stromal cells (MSC) was evaluated using ELISA, as well as in vitro adhesion assays on monolayer cell cultures. The results demonstrated MAG_6130 as a novel adhesin of M. agalactiae whose capacity to adhere to eukaryotic cells was significantly reduced by specific antiserum. Additionally, these proteins exhibited significant binding to plasminogen and extracellular matrix (ECM) proteins like lactoferrin, fibrinogen and fibronectin, a feature that could potentially support the pathogen in host colonization, tissue migration and immune evasion. Furthermore, these proteins played a detrimental role on the host cell proliferation and viability and were observed to activate pro-apoptotic genes indicating their involvement in cell death when eukaryotic cells were infected with M. agalactiae. Conclusions To summarize, the hypothetical protein corresponding to MAG_6130 has not only been assigned novel adhesion functions but together with P40 it is demonstrated for the first time to bind to lactoferrin and ECM proteins thereby playing important roles in host colonization and pathogenicity. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02512-2.
Collapse
Affiliation(s)
- Maysa Santos Barbosa
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, Vienna, A-1210, Austria.,Present Address: Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Lucas Miranda Marques
- Present Address: Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil. .,Multidisciplinary Institute of Health, Federal University of Bahia, Vitória da Conquista, Brazil.
| | - Jorge Timenetsky
- Present Address: Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Renate Rosengarten
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, Vienna, A-1210, Austria
| | - Joachim Spergser
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, Vienna, A-1210, Austria
| | - Rohini Chopra-Dewasthaly
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, Vienna, A-1210, Austria.
| |
Collapse
|
10
|
Tavares BADR, Paes JA, Zaha A, Ferreira HB. Reannotation of Mycoplasma hyopneumoniae hypothetical proteins revealed novel potential virulence factors. Microb Pathog 2021; 162:105344. [PMID: 34864146 DOI: 10.1016/j.micpath.2021.105344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 01/08/2023]
Abstract
Mycoplasma hyopneumoniae is a bacterium that inhabits the swine respiratory tract, causing porcine enzootic pneumonia, which generates significant economic losses to the swine industry worldwide. The knowledge on M. hyopneumoniae biology and virulence have been significantly increased by genomics studies. However, around 30% of the predicted proteins remained of unknown function so far. According to the original annotation, the genome of M. hyopneumoniae 7448, a Brazilian pathogenic strain, had 693 coding DNA sequences, 244 of which were annotated as coding for hypothetical or uncharacterized proteins. Among them, there may be still several genes coding for unknown virulence factors. Therefore, this study aimed to functionally reannotate the whole set of 244 M. hyopneumoniae 7448 proteins of unknown function based on currently available database and bioinformatic tools, in order to predict novel potential virulence factors. Predictions of physicochemical properties, subcellular localization, function, overall association to virulence and antigenicity are provided. With that, 159 out of the set of 244 proteins of unknown function had a putative function associated to them, allowing identification of novel enzymes, membrane transporters, lipoproteins, DNA-binding proteins and adhesins. Furthermore, 139 proteins were generally associated to virulence, 14 of which had a function assigned and were differentially expressed between pathogenic and non-pathogenic strains of M. hyopneumoniae. Moreover, all extracellular or cytoplasmic membrane predicted proteins had putative epitopes identified. Overall, these analyses improved the functional annotation of M. hyopneumoniae 7448 genome from 65% to 87% and allowed the identification of new potential virulence factors.
Collapse
Affiliation(s)
- Bryan Augusto da Rosa Tavares
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
| | - Jéssica Andrade Paes
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
| | - Arnaldo Zaha
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil; Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil; Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre, Brazil
| | - Henrique Bunselmeyer Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil; Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil; Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre, Brazil.
| |
Collapse
|
11
|
Abstract
Mycoplasma hyopneumoniae: is the etiological agent of porcine enzootic pneumonia (EP), a disease that impacts the swine industry worldwide. Pathogen-induced damage, as well as the elicited host-response, contribute to disease. Here, we provide an overview of EP epidemiology, control and prevention, and a more in-depth review of M. hyopneumoniae pathogenicity determinants, highlighting some molecular mechanisms of pathogen-host interactions relevant for pathogenesis. Based on recent functional, immunological, and comparative “omics” results, we discuss the roles of many known or putative M. hyopneumoniae virulence factors, along with host molecules involved in EP. Moreover, the known molecular bases of pathogenicity mechanisms, including M. hyopneumoniae adhesion to host respiratory epithelium, protein secretion, cell damage, host microbicidal response and its modulation, and maintenance of M. hyopneumoniae homeostasis during infection are described. Recent findings regarding M. hyopneumoniae pathogenicity determinants also contribute to the development of novel diagnostic tests, vaccines, and treatments for EP.
Collapse
Affiliation(s)
- Fernanda M A Leal Zimmer
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS) , Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil
| | - Jéssica Andrade Paes
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS) , Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil
| | - Arnaldo Zaha
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS) , Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil.,Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil.,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS , Porto Alegre, Brazil
| | - Henrique Bunselmeyer Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS) , Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil.,Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil.,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS , Porto Alegre, Brazil
| |
Collapse
|
12
|
Wang Z, Wen Y, Zhou B, Tian Y, Ning Y, Ding H. Incomplete autophagy promotes the replication of Mycoplasma hyopneumoniae. J Microbiol 2021; 59:782-791. [PMID: 34219210 DOI: 10.1007/s12275-021-1232-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/26/2021] [Indexed: 01/18/2023]
Abstract
Autophagy is an important cellular homeostatic mechanism for recycling of degradative proteins and damaged organelles. Autophagy has been shown to play an important role in cellular responses to bacteria and bacterial replication. However, the role of autophagy in Mycoplasma hyopneumoniae infection and the pathogenic mechanism is not well characterized. In this study, we showed that M. hyopneumoniae infection significantly increases the number of autophagic vacuoles in host cells. Further, we found significantly enhanced expressions of autophagy marker proteins (LC3-II, ATG5, and Beclin 1) in M. hyopneumoniae-infected cells. Moreover, immunofluorescence analysis showed colocalization of P97 protein with LC3 during M. hyopneumoniae infection. Interestingly, autophagic flux marker, p62, accumulated with the induction of infection. Conversely, the levels of p62 and LC3-II were decreased after treatment with 3-MA, inhibiting the formation of autophagosomes, during infection. In addition, accumulation of autophagosomes promoted the expression of P97 protein and the survival of M. hyopneumoniae in PK-15 cells, as the replication of M. hyopneumoniae was down-regulated by adding 3-MA. Collectively, these findings provide strong evidence that M. hyopneumoniae induces incomplete autophagy, which in turn enhances its reproduction in host cells. These findings provide novel insights into the interaction of M. hyopneumoniae and host.
Collapse
Affiliation(s)
- Zhaodi Wang
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, Chongqing, 400715, P. R. China
| | - Yukang Wen
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, Chongqing, 400715, P. R. China
| | - Bingqian Zhou
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, Chongqing, 400715, P. R. China
| | - Yaqin Tian
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, Chongqing, 400715, P. R. China
| | - Yaru Ning
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, Chongqing, 400715, P. R. China
| | - Honglei Ding
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, Chongqing, 400715, P. R. China.
| |
Collapse
|
13
|
Almeida HMS, Mechler-Dreibi ML, Sonálio K, Ferreira MM, Martinelli PEB, Gatto IRH, Maes D, Montassier HJ, Oliveira LG. Dynamics and chronology of Mycoplasma hyopneumoniae strain 232 infection in experimentally inoculated swine. Porcine Health Manag 2021; 7:42. [PMID: 34193314 PMCID: PMC8243732 DOI: 10.1186/s40813-021-00221-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/03/2021] [Indexed: 11/15/2022] Open
Abstract
Direct detection of Mycoplasma hyopneumoniae through molecular tools is a growing trend for early diagnosis, highlighting the importance of knowing M. hyopneumoniae dynamics in the respiratory tract upon infection. This study focused on monitoring the infection level and its effects in different anatomic sites of the respiratory tract of experimentally infected swine in four time-points post-infection. To this end, 24 pigs were allocated to either non-inoculated group (n = 8) or inoculated group (n = 16). On day 0 post-infection (dpi), animals of the inoculated group were intratracheally inoculated with M. hyopneumoniae. Nasal swabs were collected weekly for qPCR detection of bacterial shedding. At 14, 28, 42, and 56 dpi, four animals from the inoculated group and two from the control group were necropsied. Bronchoalveolar lavage fluid (BALF) and samples from three different anatomical tracheal sections (cranial - CT, medium - MT, lower - LT) were collected for qPCR and histopathology. Bacterial loads (qPCR) in tracheal samples were: 4.47 × 102 copies∕μL (CT), 1.5 × 104- copies∕ μL (MT) and 1.4 × 104 copies∕μL (LT samples). M. hyopneumoniae quantification in BALF showed the highest load at 28 dpi (2.0 × 106 copies∕ μL). Microscopic lesions in LT samples presented the highest scores at 56 dpi and were significantly correlated with the pathogen load on 14 dpi (0.93) and 28 dpi (0.75). The greatest bacterial load of M. hyopneumoniae in CT samples and BALF was registered at 28 dpi, and it remained high in BALF and LT throughout the 56 dpi. The pathogen was able to persist during the whole experimental period, however higher estimated quantification values were registered in the lower parts of the respiratory tract, especially at 56 dpi. These findings are important for improving diagnostics, treatment, and control measures of M. hyopneumoniae infection in swine herds.
Collapse
Affiliation(s)
- Henrique M S Almeida
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Marina L Mechler-Dreibi
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Karina Sonálio
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Marcela M Ferreira
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Paulo E B Martinelli
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Igor R H Gatto
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Dominiek Maes
- Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Hélio J Montassier
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Luís G Oliveira
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil.
| |
Collapse
|
14
|
Yiwen C, Yueyue W, Lianmei Q, Cuiming Z, Xiaoxing Y. Infection strategies of mycoplasmas: Unraveling the panoply of virulence factors. Virulence 2021; 12:788-817. [PMID: 33704021 PMCID: PMC7954426 DOI: 10.1080/21505594.2021.1889813] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mycoplasmas, the smallest bacteria lacking a cell wall, can cause various diseases in both humans and animals. Mycoplasmas harbor a variety of virulence factors that enable them to overcome numerous barriers of entry into the host; using accessory proteins, mycoplasma adhesins can bind to the receptors or extracellular matrix of the host cell. Although the host immune system can eradicate the invading mycoplasma in most cases, a few sagacious mycoplasmas employ a series of invasion and immune escape strategies to ensure their continued survival within their hosts. For instance, capsular polysaccharides are crucial for anti-phagocytosis and immunomodulation. Invasive enzymes degrade reactive oxygen species, neutrophil extracellular traps, and immunoglobulins. Biofilm formation is important for establishing a persistent infection. During proliferation, successfully surviving mycoplasmas generate numerous metabolites, including hydrogen peroxide, ammonia and hydrogen sulfide; or secrete various exotoxins, such as community-acquired respiratory distress syndrome toxin, and hemolysins; and express various pathogenic enzymes, all of which have potent toxic effects on host cells. Furthermore, some inherent components of mycoplasmas, such as lipids, membrane lipoproteins, and even mycoplasma-generated superantigens, can exert a significant pathogenic impact on the host cells or the immune system. In this review, we describe the proposed virulence factors in the toolkit of notorious mycoplasmas to better understand the pathogenic features of these bacteria, along with their pathogenic mechanisms.
Collapse
Affiliation(s)
- Chen Yiwen
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Wu Yueyue
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Qin Lianmei
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Zhu Cuiming
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - You Xiaoxing
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| |
Collapse
|
15
|
Santos Junior MN, de Macêdo Neres NS, Campos GB, Bastos BL, Timenetsky J, Marques LM. A Review of Ureaplasma diversum: A Representative of the Mollicute Class Associated With Reproductive and Respiratory Disorders in Cattle. Front Vet Sci 2021; 8:572171. [PMID: 33681318 PMCID: PMC7930009 DOI: 10.3389/fvets.2021.572171] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/13/2021] [Indexed: 12/22/2022] Open
Abstract
The Mollicutes class encompasses wall-less microbes with a reduced genome. They may infect plants, insects, humans, and animals including those on farms and in livestock. Ureaplasma diversum is a mollicute associated with decreased reproduction mainly in the conception rate in cattle, as well as weight loss and decreased quality in milk production. Therefore, U. diversum infection contributes to important economic losses, mainly in large cattle-producing countries such as the United States, China, Brazil, and India. The characteristics of Mollicutes, virulence, and pathogenic variations make it difficult to control their infections. Genomic analysis, prevalence studies, and immunomodulation assays help better understand the pathogenesis of bovine ureaplasma. Here we present the main features of transmission, virulence, immune response, and pathogenesis of U. diversum in bovines.
Collapse
Affiliation(s)
- Manoel Neres Santos Junior
- Department of Biointeraction, Multidisciplinary Institute of Health, Universidade Federal da Bahia, Vitória da Conquista, Brazil
- Department of Microbiology, State University of Santa Cruz (UESC), Ilhéus, Brazil
| | - Nayara Silva de Macêdo Neres
- Department of Biointeraction, Multidisciplinary Institute of Health, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| | - Guilherme Barreto Campos
- Department of Biointeraction, Multidisciplinary Institute of Health, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| | - Bruno Lopes Bastos
- Department of Biointeraction, Multidisciplinary Institute of Health, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| | - Jorge Timenetsky
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Lucas Miranda Marques
- Department of Biointeraction, Multidisciplinary Institute of Health, Universidade Federal da Bahia, Vitória da Conquista, Brazil
- Department of Microbiology, State University of Santa Cruz (UESC), Ilhéus, Brazil
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Li G, Obeng E, Shu J, Shu J, Chen J, Wu Y, He Y. Genomic Variability and Post-translational Protein Processing Enhance the Immune Evasion of Mycoplasma hyopneumoniae and Its Interaction With the Porcine Immune System. Front Immunol 2020; 11:510943. [PMID: 33117335 PMCID: PMC7575705 DOI: 10.3389/fimmu.2020.510943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 08/27/2020] [Indexed: 11/23/2022] Open
Abstract
Mycoplasma hyopneumoniae (M. hyopneumoniae, Mhp) is a geographically widespread and economically devastating pathogen that colonizes ciliated epithelium; the infection of Mhp can damnify the mucociliary functions as well as leading to Mycoplasma pneumonia of swine (MPS). MPS is a chronic respiratory infectious disease with high infectivity, and the mortality can be increased by secondary infections as the host immunity gets down-regulated during Mhp infection. The host immune responses are regarded as the main driving force for the disease development, while MPS is prone to attack repeatedly in farms even with vaccination or other treatments. As one of the smallest microorganisms with limited genome scale and metabolic pathways, Mhp can use several mechanisms to achieve immune evasion effect and derive enough nutrients from its host, indicating that there is a strong interaction between Mhp and porcine organism. In this review, we summarized the immune evasion mechanisms from genomic variability and post-translational protein processing. Besides, Mhp can induce the immune cells apoptosis by reactive oxygen species production, excessive nitric oxide (NO) release and caspase activation, and stimulate the release of cytokines to regulate inflammation. This article seeks to provide some new points to reveal the complicated interaction between the pathogen and host immune system with Mhp as a typical example, further providing some new strategies for the vaccine development against Mhp infection.
Collapse
Affiliation(s)
- Gaojian Li
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Enoch Obeng
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jinqi Shu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jianhong Shu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.,Zhejiang Hom-Sun Biosciences Co., Ltd., Shaoxing, China
| | - Jian Chen
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yuehong Wu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yulong He
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
17
|
Persistence in Livestock Mycoplasmas—a Key Role in Infection and Pathogenesis. CURRENT CLINICAL MICROBIOLOGY REPORTS 2020. [DOI: 10.1007/s40588-020-00149-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
Purpose of Review
Mycoplasma, economically important pathogens in livestock, often establishes immunologically complex persistent infections that drive their pathogenesis and complicate prophylaxis and therapy of the caused diseases. In this review, we summarize some of the recent findings concerning cellular and molecular persistence mechanisms related to the pathogenesis of mycoplasma infections in livestock.
Recent Findings
Data from recent studies prove several mechanisms including intracellular lifestyle, immune dysregulation, and autoimmunity as well as microcolony and biofilm formation and apoptosis of different host cell types as important persistence mechanisms in several clinically significant Mycoplasma species, i.e., M. bovis, M. gallisepticum, M. hyopneumoniae, and M. suis.
Summary
Evasion of the immune system and the establishment of persistent infections are key features in the pathogenesis of livestock mycoplasmas. In-depth knowledge of the underlying mechanisms will provide the basis for the development of therapy and prophylaxis strategies against mycoplasma infections.
Collapse
|
18
|
Qin L, Chen Y, You X. Subversion of the Immune Response by Human Pathogenic Mycoplasmas. Front Microbiol 2019; 10:1934. [PMID: 31497004 PMCID: PMC6712165 DOI: 10.3389/fmicb.2019.01934] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022] Open
Abstract
Mycoplasmas are a large group of prokaryotes which is believed to be originated from Gram-positive bacteria via degenerative evolution, and mainly capable of causing a wide range of human and animal infections. Although innate immunity and adaptive immunity play crucial roles in preventing mycoplasma infection, immune response that develops after infection fails to completely eliminate this bacterium under certain circumstances. Thus, it is reasonable to speculate that mycoplasmas employ some mechanisms to deal with coercion of host defense system. In this review, we will highlight and provide a comprehensive overview of immune evasion strategies that have emerged in mycoplasma infection, which can be divided into four aspects: (i) Molecular mimicry and antigenic variation on the surface of the bacteria to evade the immune surveillance; (ii) Overcoming the immune effector molecules assaults: Induction of detoxified enzymes to degradation of reactive oxygen species; Expression of nucleases to degrade the neutrophil extracellular traps to avoid killing by Neutrophil; Capture and cleavage of immunoglobulins to evade humoral immune response; (iii) Persistent survival: Invading into the host cell to escape the immune damage; Formation of a biofilm to establish a persistent infection; (iv) Modulation of the immune system to down-regulate the intensity of immune response. All of these features increase the probability of mycoplasma survival in the host and lead to a persistent, chronic infections. A profound understanding on the mycoplasma to subvert the immune system will help us to better understand why mycoplasma is so difficult to eradicate and ultimately provide new insights on the development of therapeutic regimens against this bacterium in future.
Collapse
Affiliation(s)
- Lianmei Qin
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Yiwen Chen
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Xiaoxing You
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
19
|
Quantitative Proteomic Analyses of a Pathogenic Strain and Its Highly Passaged Attenuated Strain of Mycoplasma hyopneumoniae. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4165735. [PMID: 31355261 PMCID: PMC6634062 DOI: 10.1155/2019/4165735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/14/2019] [Accepted: 05/27/2019] [Indexed: 12/21/2022]
Abstract
Mycoplasma hyopneumoniae is the causative agent of porcine enzootic pneumonia, a chronic respiratory disease in swine resulting in enormous economic losses. To identify the components that contribute to virulence and unveil those biological processes potentially related to attenuation, we used isobaric tags for relative and absolute quantification technology (iTRAQ) to compare the protein profiles of the virulent M. hyopneumoniae strain 168 and its attenuated highly passaged strain 168L. We identified 489 proteins in total, 70 of which showing significant differences in level of expression between the two strains. Remarkably, proteins participating in inositol phosphate metabolism were significantly downregulated in the virulent strain, while some proteins involved in nucleoside metabolism were upregulated. We also mined a series of novel promising virulence-associated factors in our study compared with those in previous reports, such as some moonlighting adhesins, transporters, lipoate-protein ligase, and ribonuclease and several hypothetical proteins with conserved functional domains, deserving further research. Our survey constitutes an iTRAQ-based comparative proteomic analysis of a virulent M. hyopneumoniae strain and its attenuated strain originating from a single parent with a well-characterized genetic background and lays the groundwork for future work to mine for potential virulence factors and identify candidate vaccine proteins.
Collapse
|
20
|
Deeney AS, Maglennon GA, Chapat L, Crussard S, Jolivet E, Rycroft AN. Mycoplasma hyopneumoniae evades phagocytic uptake by porcine alveolar macrophages in vitro. Vet Res 2019; 50:51. [PMID: 31234931 PMCID: PMC6591956 DOI: 10.1186/s13567-019-0667-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/10/2019] [Indexed: 01/24/2023] Open
Abstract
Mycoplasma hyopneumoniae, the agent of porcine enzootic pneumonia (EP), is able to persist in the lung tissue and evade destruction by the host for several weeks. To understand the mechanism of pathogen survival, phagocytic uptake of M. hyopneumoniae by primary porcine alveolar macrophages was investigated. Intracellular location and survival of the pathogen were explored using gentamicin survival assays, flow cytometry and confocal microscopy of M. hyopneumoniae 232 labelled with green fluorescent protein (GFP). Following 1 h and 16 h of co-incubation, few viable M. hyopneumoniae were recovered from inside macrophages. Flow cytometric analysis of macrophages incubated with M. hyopneumoniae expressing GFP indicated that the mycoplasmas became associated with macrophages, but were shown to be extracellular when actin-dependent phagocytosis was blocked with cytochalasin D. Confocal microscopy detected GFP-labelled M. hyopneumoniae inside macrophages and the numbers increased modestly with time of incubation. Neither the addition of porcine serum complement or convalescent serum from EP-recovered pigs was able to enhance engulfment of M. hyopneumoniae. This investigation suggests that M. hyopneumoniae evades significant uptake by porcine alveolar macrophages and this may be a mechanism of immune escape by M. hyopneumoniae in the porcine respiratory tract.
Collapse
Affiliation(s)
- Alannah S Deeney
- Department of Pathobiology and Population Science, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, UK.
| | - Gareth A Maglennon
- AstraZeneca UK Ltd., Cambridge Biomedical Campus, Cambridge, CB2 0AA, UK
| | | | | | | | - Andrew N Rycroft
- Department of Pathobiology and Population Science, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, UK
| |
Collapse
|