1
|
Liao Z, Long R, Ding W, Yu Y, Naseer A, Li L, Ye H, Xu H, Li Y, Pan X, Wu R. Contribution of the type IV pili secretin tapQ to motility, growth, adhesion, stress tolerance and virulence of Aeromonas hydrophila. Int J Biol Macromol 2025; 307:142203. [PMID: 40107542 DOI: 10.1016/j.ijbiomac.2025.142203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/01/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
Aeromonas hydrophila (A. hydrophila) is a widely distributed opportunistic aquatic pathogen. Type IV pili (T4P) are regarded as key virulence factors of A. hydrophila that play a pivotal role in virulence, and tapQ is a component of T4P. However, the role and mechanism of tapQ in the pathogenicity of A. hydrophila are not clear. In this study, a stable genetically tapQ mutant strain of A. hydrophila (ΔtapQ-AH) was constructed. The median lethal dose value of ΔtapQ-AH in Carassius auratus was 0.82-fold that of wild-type strain of A. hydrophila (WT-AH), indicating that ΔtapQ-AH packs a stronger dose of virulence. The ΔtapQ-AH exhibited a significant increase in swimming, biofilm formation, adhesion, osmotic and oxidative stress resistance abilities compared with WT-AH. Twitching and growth abilities showed significant reductions. Exploring the molecular mechanism of the effect of tapQ gene deletion on virulence and biological properties, we found that tapQ gene mutation would affect gene expression of the phage shock protein (Psp) system, type II secretion system, flagellum, type IV pili, type VI secretion system and outer membrane protein. Taken together, this study initially reveals the role of the tapQ gene and offers novel insights into the mechanisms of virulence regulation in A. hydrophila.
Collapse
Affiliation(s)
- Ziyi Liao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Rui Long
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Wan'e Ding
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Yongyao Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Adeeba Naseer
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Liping Li
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Hua Ye
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Hao Xu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Yun Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Xiaoyi Pan
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China.
| | - Ronghua Wu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Zhang Y, Zhao X, Wang J, Liao L, Qin H, Zhang R, Li C, He Y, Huang S. VmsR, a LuxR-Type Regulator, Contributes to Virulence, Cell Motility, Extracellular Polysaccharide Production and Biofilm Formation in Xanthomonas oryzae pv. oryzicola. Int J Mol Sci 2024; 25:7595. [PMID: 39062838 PMCID: PMC11277528 DOI: 10.3390/ijms25147595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
LuxR-type regulators play pivotal roles in regulating numerous bacterial processes, including bacterial motility and virulence, thereby exerting a significant influence on bacterial behavior and pathogenicity. Xanthomonas oryzae pv. oryzicola, a rice pathogen, causes bacterial leaf streak. Our research has identified VmsR, which is a response regulator of the two-component system (TCS) that belongs to the LuxR family. These findings of the experiment reveal that VmsR plays a crucial role in regulating pathogenicity, motility, biofilm formation, and the production of extracellular polysaccharides (EPSs) in Xoc GX01. Notably, our study shows that the vmsR mutant exhibits a reduced swimming motility but an enhanced swarming motility. Furthermore, this mutant displays decreased virulence while significantly increasing EPS production and biofilm formation. We have uncovered that VmsR directly interacts with the promoter regions of fliC and fliS, promoting their expression. In contrast, VmsR specifically binds to the promoter of gumB, resulting in its downregulation. These findings indicate that the knockout of vmsR has profound effects on virulence, motility, biofilm formation, and EPS production in Xoc GX01, providing insights into the intricate regulatory network of Xoc.
Collapse
Affiliation(s)
- Yaqi Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China; (Y.Z.); (X.Z.); (J.W.); (L.L.); (H.Q.); (R.Z.); (C.L.)
| | - Xiyao Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China; (Y.Z.); (X.Z.); (J.W.); (L.L.); (H.Q.); (R.Z.); (C.L.)
| | - Jiuxiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China; (Y.Z.); (X.Z.); (J.W.); (L.L.); (H.Q.); (R.Z.); (C.L.)
| | - Lindong Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China; (Y.Z.); (X.Z.); (J.W.); (L.L.); (H.Q.); (R.Z.); (C.L.)
| | - Huajun Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China; (Y.Z.); (X.Z.); (J.W.); (L.L.); (H.Q.); (R.Z.); (C.L.)
| | - Rongbo Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China; (Y.Z.); (X.Z.); (J.W.); (L.L.); (H.Q.); (R.Z.); (C.L.)
| | - Changyu Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China; (Y.Z.); (X.Z.); (J.W.); (L.L.); (H.Q.); (R.Z.); (C.L.)
| | - Yongqiang He
- College of Agronomy, Guangxi University, Nanning 530004, China
| | - Sheng Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China; (Y.Z.); (X.Z.); (J.W.); (L.L.); (H.Q.); (R.Z.); (C.L.)
| |
Collapse
|
3
|
Lu J, Xiong C, Wei J, Xiong C, Long R, Yu Y, Ye H, Ozdemir E, Li Y, Wu R. The role and molecular mechanism of flgK gene in biological properties, pathogenicity and virulence genes expression of Aeromonas hydrophila. Int J Biol Macromol 2024; 258:129082. [PMID: 38161026 DOI: 10.1016/j.ijbiomac.2023.129082] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/22/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Aeromonas hydrophila is a highly pathogenic aquatic resident bacterium that can cause co-morbidity in aquatic animals, waterfowl, poultry, and humans. Flagellum is the motility organ of bacteria important for bacterium tissue colonization and invasion. The flgK gene encodes a flagellar hook protein essential for normal flagellar formation. In order to explore the role of flgK in A. hydrophila, a flgK gene mutant strain of A. hydrophila (∆flgK-AH) was constructed using an efficient suicide plasmid-mediated homologous recombination method, and gene sequencing confirmed successful mutation of the flgK gene. The biological properties, pathogenicity and virulence genes expression were compared. The results showed that there was no significant difference in the growth, hemolytic, and swarming abilities, but the swimming and biofilm formation abilities of ∆flgK-AH were significantly reduced and the transmission electron microscope (TEM) results showed that the ∆flgK-AH strain did not have a flagellar structure. The median lethal dose (LD50) value of the ∆flgK-AH in Carassius auratus was 1.47-fold higher than that of the wild-type strain (WT-AH). The quantitative real-time PCR results showed that only the expression level of the lapA gene was up-regulated by 1.47 times compared with the WT-AH, while the expression levels of other genes were significantly down-regulated. In conclusion, flgK gene mutant led to a decline in the pathogenicity possibly by reducing swimming and biofilm formation abilities, these biological properties might result from the down-regulated expression of flagellate and pilus-related genes.
Collapse
Affiliation(s)
- Jiahui Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Chuanyu Xiong
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Jinming Wei
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Caijiang Xiong
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Rui Long
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Yongxiang Yu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Hua Ye
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Eda Ozdemir
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Yun Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Ronghua Wu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China.
| |
Collapse
|
4
|
Yi X, Xu X, Chen Y, Xu G, Zhu Z, Li H, Shen H, Lin M, Zhao W, Zheng J, Jiang X. Genetic analysis of Vibrio alginolyticus challenged by Fructus schisandrae reveals the mechanism of virulence genes. Gene 2023; 870:147421. [PMID: 37031882 DOI: 10.1016/j.gene.2023.147421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/21/2023] [Accepted: 04/04/2023] [Indexed: 04/11/2023]
Abstract
Due to the abusive use of antibiotics, bacterial resistance has become a global problem and poses severe threats to aquaculture. The drug-resistant diseases caused by Vibrio alginolyticus have caused significant economic losses to cultured marine fish. Fructus schisandrae is used to treat inflammatory diseases in China and Japan. There have been no reports of bacterial molecular mechanisms associated with F. schisandrae stress. In this study, the inhibiting effect of F. schisandrae on the growth of V. alginolyticus was detected to understand response mechanisms at the molecular level. The antibacterial tests were analyzed via next-generation deep sequencing technology (RNA sequencing, RNA-seq). Wild V. alginolyticus (CK) was compared with V. alginolyticus, F. schisandrae incubated for 2 h, and V. alginolyticus, F. schisandrae incubated for 4 h. Our results revealed that there were 582 genes (236 upregulated and 346 downregulated) and 1068 genes (376 upregulated and 692 downregulated), respectively. Differentially expressed genes (DEGs) were involved in the following functional categories: metabolic process, single-organism process, catalytic activity, cellular process, binding, membrane, cell part, cell, and localization. FS_2 h was compared with FS_4 h, and 21 genes (14 upregulated and 7 downregulated) were obtained. The RNA-seq results were validated by detecting the expression levels of 13 genes using quantitative real-time polymerase chain reaction (qRT-PCR). The qRT-PCR results matched those of the sequencing, which reinforced the reliability of the RNA-seq. The results revealed the transcriptional response of V. alginolyticus to F. schisandrae, which will provide new ideas for studying V. alginolyticus' complex virulence molecular mechanism and the possibility of developing Schisandra to prevent and treat drug-resistant diseases.
Collapse
Affiliation(s)
- Xin Yi
- Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fujian Province, Xiamen 361021, China
| | - XiaoJin Xu
- Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fujian Province, Xiamen 361021, China; Fujian Province Key Laboratory of Special Aquatic Formula Feed(Fujian Tianma Science and Technology Group Co., Ltd.)
| | - YuNong Chen
- Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fujian Province, Xiamen 361021, China; Fujian Province Key Laboratory of Special Aquatic Formula Feed(Fujian Tianma Science and Technology Group Co., Ltd.)
| | - Genhuang Xu
- Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fujian Province, Xiamen 361021, China
| | - ZhiQin Zhu
- Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fujian Province, Xiamen 361021, China
| | - Huiyao Li
- Fisheries Research Institute of Fujian, Xiamen 361013, China
| | - HaoYang Shen
- Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fujian Province, Xiamen 361021, China
| | - Mao Lin
- Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fujian Province, Xiamen 361021, China
| | - Wenyu Zhao
- Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fujian Province, Xiamen 361021, China
| | - Jiang Zheng
- Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fujian Province, Xiamen 361021, China
| | - XingLong Jiang
- Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fujian Province, Xiamen 361021, China.
| |
Collapse
|
5
|
Jiao X, Zhang DX, Chen C, Kong LC, Hu XY, Shan XF, Qian AD. Immunization effect of recombinant Lactobacillus casei displaying Aeromonas veronii Aha1 with an LTB adjuvant in carp. FISH & SHELLFISH IMMUNOLOGY 2023; 135:108660. [PMID: 36940784 DOI: 10.1016/j.fsi.2023.108660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 01/09/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Aeromonas veronii is an important aquatic zoonotic, which elicits a range of diseases, such as haemorrhagic septicemia. To develop an effective oral vaccine against Aeromonas veronii infection in carp, the Aeromonas veronii adhesion (Aha1) gene was used as a target molecule to attach to intestinal epithelial cells. Two anchored recombinant. Lactic acid bacteria strains (LC-pPG-Aha1 1038 bp and LC-pPG-Aha1-LTB 1383 bp) were constructed by fusing them with the E. coli intolerant enterotoxin B subunit (LTB) gene and using Lactobacillus casei as antigen delivery vector to evaluate immune effects of these in carp. Western blotting and immunofluorescence were used to confirm that protein expression was successful. Additionally, levels of specific IgM in serum and the activities of ACP, AKP, SOD, LYS, C3, C4, and lectin enzymes-were assessed. Cytokines IL-10, IL-1β, TNF-α, IgZ1, and IgZ2 were measured in the liver, spleen, kidney, intestines, and gills tissue by qRT-PCR, which showed an increasing trend compared with the control group (P < 0.05). A colonization assay showed that the two L. casei recombinants colonized the middle and hind intestines of immunized fish. When immunized carp were experimentally challenged with Aeromonas veronii the relative percentage protection of LC-pPG-Aha1 was 53.57%, and LC-pPG-Aha1-LTB was 60.71%. In conclusion, these results demonstrate that Aha1 is a promising candidate antigen when it is displayed on lactic acid bacteria (Lc-pPG-Aha1 and Lc-pPG-Aha1-LTB) seems promising for a mucosal therapeutic approach. We plan to investigate the molecular mechanism of the L. casei recombinant in regulating the intestinal tissue of carp in future studies.
Collapse
Affiliation(s)
- Xue Jiao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Dong-Xing Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Chong Chen
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Ling-Cong Kong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xiao-Yu Hu
- College of Animal Science and Technology, Jilin University, Changchun, China
| | - Xiao-Feng Shan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.
| | - Ai-Dong Qian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
6
|
Xu H, Xu R, Wang X, Liang Q, Zhang L, Liu J, Wei J, Lu Y, Yu D. Co-infections of Aeromonas veronii and Nocardia seriolae in largemouth bass (Micropterus salmoides). Microb Pathog 2022; 173:105815. [DOI: 10.1016/j.micpath.2022.105815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
|
7
|
Guan Y, Zhang M, Wang Y, Liu Z, Zhao Z, Wang H, An D, Qian A, Kang Y, Sun W, Shan X. Functional analysis of ascP in Aeromonas veronii TH0426 reveals a key role in the regulation of virulence. JOURNAL OF MICROBIOLOGY 2022; 60:1153-1161. [PMCID: PMC9647756 DOI: 10.1007/s12275-022-2373-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Yongchao Guan
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 P. R. China
| | - Meng Zhang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 P. R. China
| | - Yingda Wang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 P. R. China
| | - Zhongzhuo Liu
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 P. R. China
| | - Zelin Zhao
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 P. R. China
| | - Hong Wang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 P. R. China
| | - Dingjie An
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 P. R. China
| | - Aidong Qian
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 P. R. China
| | - Yuanhuan Kang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 P. R. China
| | - Wuwen Sun
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 P. R. China
| | - Xiaofeng Shan
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 P. R. China
| |
Collapse
|
8
|
Yi X, Xu X, Qi X, Chen Y, Zhu Z, Xu G, Li H, Kraco EK, Shen H, Lin M, Zheng J, Qin Y, Jiang X. Mechanisms Underlying the Virulence Regulation of Vibrio alginolyticus ND-01 pstS and pstB with a Transcriptomic Analysis. Microorganisms 2022; 10:2093. [PMID: 36363689 PMCID: PMC9698627 DOI: 10.3390/microorganisms10112093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 05/18/2024] Open
Abstract
Vibrio alginolyticus is a common opportunistic pathogen of fish, shrimp, and shellfish, and many diseases it causes can result in severe economic losses in the aquaculture industry. Causing host disease was confirmed by several virulence factors of V. alginolyticus. To date, there have been no reports on the effect of the pstS gene on its virulence regulation of V. alginolyticus. The virulence mechanism of target genes regulating V. alginolyticus is worthy of further study. Previous studies found that Fructus schisandrae (30 mg/mL) inhibited the growth of V. alginolyticus ND-01 (OD600 = 0.5) for 4 h, while the expressions of pstS and pstB were significantly affected by F. schisandrae stress. So, we speculated that pstS and pstB might be the virulence genes of V. alginolyticus, which were stably silenced by RNAi to construct the silencing strains pstS-RNAi and pstB-RNAi, respectively. After the expression of pstS or pstB gene was inhibited, the adhesion capacity and biofilm formation of V. alginolyticus were significantly down-regulated. The chemotaxis and biofilm formation ability of pstS-RNAi was reduced by 33.33% and 68.13% compared with the wild-type strain, respectively. Sequence alignment and homology analysis showed that pstS was highly conserved, which suggested that pstS played a vital role in the secretion system of V. alginolyticus. The pstS-RNAi with the highest silencing efficiency was selected for transcriptome sequencing. The Differentially Expressed Genes (DEGs) and GO terms were mapped to the reference genome of V. alginolyticus, including 1055 up-regulated genes and 1134 down-regulated genes. The functions of the DEGs were analyzed by GO and categorized into different enriched functional groups, such as ribosome synthesis, organelles, biosynthesis, pathogenesis, and secretion. These DEGs were then mapped to the reference KEGG pathways of V. alginolyticus and enriched in commonalities in the metabolic, ribosomal, and bacterial secretion pathways. Therefore, pstS and pstB could regulate the bacterial virulence of V. alginolyticus by affecting its adhesion, biofilm formation ability, and motility. Understanding the relationship between the expressions of pstS and pstB with bacterial virulence could provide new perspectives to prevent bacterial diseases.
Collapse
Affiliation(s)
- Xin Yi
- Key Laboratory of Healthy Mariculture for the East China Sea, Engineering Research Center of the Modern Technology for Eel Industry, Fisheries College, Jimei University, Xiamen 361021, China
| | - Xiaojin Xu
- Key Laboratory of Healthy Mariculture for the East China Sea, Engineering Research Center of the Modern Technology for Eel Industry, Fisheries College, Jimei University, Xiamen 361021, China
| | - Xin Qi
- Key Laboratory of Healthy Mariculture for the East China Sea, Engineering Research Center of the Modern Technology for Eel Industry, Fisheries College, Jimei University, Xiamen 361021, China
| | - Yunong Chen
- Key Laboratory of Healthy Mariculture for the East China Sea, Engineering Research Center of the Modern Technology for Eel Industry, Fisheries College, Jimei University, Xiamen 361021, China
| | - Zhiqin Zhu
- Key Laboratory of Healthy Mariculture for the East China Sea, Engineering Research Center of the Modern Technology for Eel Industry, Fisheries College, Jimei University, Xiamen 361021, China
| | - Genhuang Xu
- Key Laboratory of Healthy Mariculture for the East China Sea, Engineering Research Center of the Modern Technology for Eel Industry, Fisheries College, Jimei University, Xiamen 361021, China
| | - Huiyao Li
- Fisheries Research Institute of Fujian, Xiamen 361013, China
| | - Emma-Katharine Kraco
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 East Greenfield Avenue, Milwaukee, WI 53204, USA
| | - Haoyang Shen
- Key Laboratory of Healthy Mariculture for the East China Sea, Engineering Research Center of the Modern Technology for Eel Industry, Fisheries College, Jimei University, Xiamen 361021, China
| | - Mao Lin
- Key Laboratory of Healthy Mariculture for the East China Sea, Engineering Research Center of the Modern Technology for Eel Industry, Fisheries College, Jimei University, Xiamen 361021, China
| | - Jiang Zheng
- Key Laboratory of Healthy Mariculture for the East China Sea, Engineering Research Center of the Modern Technology for Eel Industry, Fisheries College, Jimei University, Xiamen 361021, China
| | - Yingxue Qin
- Key Laboratory of Healthy Mariculture for the East China Sea, Engineering Research Center of the Modern Technology for Eel Industry, Fisheries College, Jimei University, Xiamen 361021, China
| | - Xinglong Jiang
- Key Laboratory of Healthy Mariculture for the East China Sea, Engineering Research Center of the Modern Technology for Eel Industry, Fisheries College, Jimei University, Xiamen 361021, China
| |
Collapse
|
9
|
Chen C, Zu S, Zhang D, Zhao Z, Ji Y, Xi H, Shan X, Qian A, Han W, Gu J. Oral vaccination with recombinant Lactobacillus casei expressing Aha1 fused with CTB as an adjuvant against Aeromonas veronii in common carp (Cyprinus carpio). Microb Cell Fact 2022; 21:114. [PMID: 35698139 PMCID: PMC9191526 DOI: 10.1186/s12934-022-01839-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/22/2022] [Indexed: 11/19/2022] Open
Abstract
Aeromonas veronii (A. veronii) is a pathogenic that can infect human, animal and aquatic organisms, in which poses a huge threat to the health of many aquatic organisms such as Cyprinus carpio. In this study, Lactobacillus casei (L. casei) strain CC16 was used as antigen deliver carrier and fused with cholera toxin B subunit (CTB) as an adjuvant to construct the recombinant L. casei pPG-Aha1/Lc CC16(surface-displayed) and pPG-Aha1-CTB/Lc CC16(surface-displayed) expressing Aha1 protein of A. veronii, respectively. And the immune responses in Cyprinus carpio by oral route was explored. Our results demonstrated that the recombinant strains could stimulate high serum specific antibody immunoglobulin M (IgM) and induce a stronger acid phosphatase (ACP), alkaline phosphatase (AKP), C3, C4, lysozyme (LZM), Lectin and superoxide dismutase (SOD) activity in Cyprinus carpio compared with control groups. Meanwhile, the expression of Interleukin-10 (IL-10), Interleukin-1β (IL-1β), Tumor Necrosis Factor-α (TNF-α), immunoglobulin Z1 (IgZ1) and immunoglobulin Z2 (IgZ2) in the tissues were significantly upregulated compared with Lc-pPG or PBS groups, indicating that humoral and cell immune response were triggered. Additionally, recombinant L. casei could survive and colonize in fish intestine. Significantly, recombinant L. casei provides immune protection against A. veronii infection, which Cyprinus carpio received pPG-Aha1-CTB/Lc CC16 (64.29%) and pPG-Aha1/Lc CC16 (53.57%) had higher survival rates compared with the controls. Thus, we demonstrated that recombinant pPG-Aha1/Lc CC16 and pPG-Aha1-CTB/Lc CC16 may be the promising strategy for the development of an oral vaccine against A. veronii.
Collapse
Affiliation(s)
- Chong Chen
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Shuo Zu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130025, People's Republic of China
| | - Dongxing Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Zelin Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Yalu Ji
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Hengyu Xi
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Xiaofeng Shan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Aidong Qian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China.
| | - Wenyu Han
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China. .,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| | - Jingmin Gu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China. .,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
10
|
Sharma A, Yadav SP, Sarma D, Mukhopadhaya A. Modulation of host cellular responses by gram-negative bacterial porins. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 128:35-77. [PMID: 35034723 DOI: 10.1016/bs.apcsb.2021.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The outer membrane of a gram-negative bacteria encapsulates the plasma membrane thereby protecting it from the harsh external environment. This membrane acts as a sieving barrier due to the presence of special membrane-spanning proteins called "porins." These porins are β-barrel channel proteins that allow the passive transport of hydrophilic molecules and are impermeable to large and charged molecules. Many porins form trimers in the outer membrane. They are abundantly present on the bacterial surface and therefore play various significant roles in the host-bacteria interactions. These include the roles of porins in the adhesion and virulence mechanisms necessary for the pathogenesis, along with providing resistance to the bacteria against the antimicrobial substances. They also act as the receptors for phage and complement proteins and are involved in modulating the host cellular responses. In addition, the potential use of porins as adjuvants, vaccine candidates, therapeutic targets, and biomarkers is now being exploited. In this review, we focus briefly on the structure of the porins along with their important functions and roles in the host-bacteria interactions.
Collapse
Affiliation(s)
- Arpita Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Shashi Prakash Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Dwipjyoti Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Arunika Mukhopadhaya
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India.
| |
Collapse
|
11
|
Wang Y, Hou Y, Wang Q, Wang Y. The elucidation of the biodegradation of nitrobenzene and p-nitrophenol of nitroreductase from Antarctic psychrophile Psychrobacter sp. ANT206 under low temperature. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125377. [PMID: 33609870 DOI: 10.1016/j.jhazmat.2021.125377] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/06/2021] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
Psychrobacter is one important typical strain in the Antarctic environment. In our previous study, Psychrobacter sp. ANT206 from Antarctica with novel cold-adapted nitroreductase (PsNTR) could biodegrade nitrobenzene and p-nitrophenol in low temperature environment. In this study, the in-frame deletion mutant of psntr (Δpsntr-ANT206) that displayed well genetic stability and kanamycin resistance stability was constructed using allelic replacement method. Additionally, Δpsntr-ANT206 was more sensitive to nitrobenzene and p-nitrophenol in the comparison of heat and hyperosmolarity, suggesting that psntr gene participated in the regulation of the tolerance against nitro-aromatic compounds (NACs). Further analysis was conducted by integrated gas chromatography-mass spectrometry (GC-MS), and several metabolites were identified. Among them, ethylbenzene, L-Alanine, citric acid, aniline, 4-aminophenol and other metabolites were different between the wild-type strain and Δpsntr-ANT206 under nitrobenzene and p-nitrophenol stress at different time periods under low temperature, respectively. These data could increase the knowledge of the construction of deletion mutant strains and biodegradation mechanism of NACs of typical strains Psychrobacter from Antarctica, which would also provide the basis of the molecular technique on the regulation of bioremediation of the contaminants under low temperature in the future.
Collapse
Affiliation(s)
- Yifan Wang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yanhua Hou
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China.
| | - Quanfu Wang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China.
| | - Yatong Wang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
12
|
Zhang L, Song M, Yang N, Zhang X, Abbas Raza SH, Jia K, Tian J, Zhang Y, Zhang D, Shi Q, Wu T, Kang Y, Hou G, Qian A, Wang G, Shan X. Nucleoside Diphosphate Kinases (ndk) reveals a key role in adhesion and virulence of Aeromonas veronii. Microb Pathog 2020; 149:104577. [DOI: 10.1016/j.micpath.2020.104577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022]
|
13
|
Zhang H, Kang Y, Kong L, Ju A, Wang Y, Muhammad I, Zhang D, Qian A, Shan X, Ma H. Functional analysis ofhisJinAeromonas veroniireveals a key role in virulence. Ann N Y Acad Sci 2020; 1465:146-160. [DOI: 10.1111/nyas.14265] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Hai‐peng Zhang
- College of Animal Science and TechnologyJilin Agricultural University Changchun China
| | - Yuan‐huan Kang
- College of Animal Science and TechnologyJilin Agricultural University Changchun China
| | - Ling‐cong Kong
- College of Animal Science and TechnologyJilin Agricultural University Changchun China
| | - An‐qi Ju
- College of Animal Science and TechnologyJilin Agricultural University Changchun China
| | - Yi‐ming Wang
- College of Animal Science and TechnologyJilin Agricultural University Changchun China
| | - Inam Muhammad
- College of Animal Science and TechnologyJilin Agricultural University Changchun China
| | - Dong‐xing Zhang
- College of Animal Science and TechnologyJilin Agricultural University Changchun China
| | - Ai‐dong Qian
- College of Animal Science and TechnologyJilin Agricultural University Changchun China
| | - Xiao‐feng Shan
- College of Animal Science and TechnologyJilin Agricultural University Changchun China
| | - Hong‐xia Ma
- College of Animal Science and TechnologyJilin Agricultural University Changchun China
| |
Collapse
|
14
|
Virulence genes contributing to Aeromonas hydrophila pathogenicity in Oreochromis niloticus. Int Microbiol 2019; 22:479-490. [PMID: 30989358 DOI: 10.1007/s10123-019-00075-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/31/2019] [Accepted: 04/01/2019] [Indexed: 02/07/2023]
Abstract
Bacterial diseases are the main cause of high economic loss in aquaculture, particularly gram-negative bacteria. This study was conducted for the isolation and identification of Aeromonas and Pseudomonas spp. from diseased fish. Twenty-two Aeromonas and sixteen Pseudomonas isolates were recovered from diseased Nile tilapia (Oreochromis niloticus) raised in eight earthen ponds in Elhox, Metoubes, Kafrelsheikh, Egypt. The recovered isolates were further identified using PCR as 22 Aeromonas hydrophila, 11 Pseudomonas aeruginosa, and 5 Pseudomonas fluorescens isolates. The 22 A. hydrophila isolates were screened for the presence of four virulence genes. Sixteen of the isolates (72.72%) were positive for the aerolysin gene (aer); 4 (18.18%) harbored the cytotoxic enterotoxin gene (act); and 2 (9.09%) carried the hemolysin A gene (hylA) while the cytotonic heat-stable enterotoxin gene (ast) was absent from all the tested isolates. The pathogenicity test indicated the direct relationship between the mortality percentage and the genotype of the tested A. hydrophila isolates as the mortality rates were 63.3 and 73.3% for isolates with two virulence genes (aer+ & act+, and aer+ and hylA+, respectively), followed by 40, 53.3, and 56.6% for isolates with only one virulence gene (hylA, act, and aer, respectively) and 20% for isolates lacking virulence genes. Based on the sensitivity test, the multi-antibiotic resistance profiles were as follows: 90.9% of the A. hydrophila isolates were sensitive to florfenicol and doxycycline; then 68.18% were susceptible to oxytetracycline, norfloxacin, and ciprofloxacin; and 63.63% were susceptible to sulfamethoxazole-trimethoprim, while only 27.27 and 4.5% were sensitive to erythromycin and cephradine, respectively, and all the isolates were resistant to amoxicillin and ampicillin.
Collapse
|