1
|
Li D, Ma W, Chen G, Huang Z, Liu Q. Deletion of Nox from Listeria monocytogenes Strain EGDe Enhances Bacterial Virulence and Reduces the Production of Reactive Oxygen Species and Inflammatory Factors In Vivo. Foodborne Pathog Dis 2025; 22:177-186. [PMID: 38484311 DOI: 10.1089/fpd.2023.0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
The foodborne pathogens have a serious threat to human health, especially Listeria monocytogenes. NADPH oxidase (NOX) is involved in cellular respiration and the production of reactive oxygen species (ROS), acting as messengers to host cells during the infection. However, the role of nox in the process of L. monocytogenes infection is unclear. In this study, we examined the impact of nox in L. monocytogenes by gene deletion. The results of cell experiment showed that knocking out nox from L. monocytogenes strain EGDe resulted in a twofold increase invasion ability to Caco-2 cells compared with that of wild-type strain (WT), but did not affect adhesion ability. Animal infection assays also showed that bacterial loads in the liver and spleen of mice challenged with EGDe-Δnox were approximately two times higher compared with those challenged with the WT strain. On the one hand, quantitative real-time polymerase chain reaction revealed that deletion of nox leads to upregulation of genes related to the internalization of L. monocytogenes (inlA, inlB, and inlC). More importantly, the expression of listeriolysin-positive regulatory (prfA) gene increased by three times in vivo compared with that of WT. On the other hand, the deletion of nox resulted in a reduction of the upregulation of proinflammatory factors in EGDe-Δnox compared with the WT and complementary strains. Thus, our study revealed that nox affected the virulence of L. monocytogenes by upregulating the expression of virulence genes and regulating the production of ROS and inflammatory factors in vivo.
Collapse
Affiliation(s)
- Dezhi Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Wenwen Ma
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Guowei Chen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Beijing Berry and Kang Biotechnology Co., LTD, Beijing, China
| | - Zhiqiang Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Qing Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
2
|
Pham GN, Josselin B, Cousseau A, Baratte B, Dayras M, Le Meur C, Debaets S, Weill A, Robert T, Burgaud G, Probert I, Abdoul-Latif FM, Boyer L, Bach S, Mehiri M. New Fusarochromanone Derivatives from the Marine Fungus Fusarium equiseti UBOCC-A-117302. Mar Drugs 2024; 22:444. [PMID: 39452852 PMCID: PMC11509758 DOI: 10.3390/md22100444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Two new fusarochromanone derivatives, deacetylfusarochromene (1) and deacetamidofusarochrom-2',3-diene (2), along with the previously reported metabolites fusarochromanone TDP-2 (3), fusarochromene (4), 2,2-dimethyl-5-amino-6-(2'E-ene-4'-hydroxylbutyryl)-4-chromone (5), fusarochromanone (6), (-)-chrysogine (7), and equisetin (8), were isolated from the marine fungus Fusarium equiseti UBOCC-A-117302. The structures of the compounds were determined by extensive spectrometric (HRMS) and spectroscopic (1D and 2D NMR) analyses, as well as specific rotation. Among them, 2 and 5 showed inhibition of three protein kinases with IC50 values ranging from 1.42 to 25.48 μM. Cytotoxicity and antimicrobial activity of all isolated compounds were also evaluated. Six fusarochromanone derivatives (1-6) exhibited diverse activities against three cell lines, RPE-1, HCT-116, and U2OS (IC50 values ranging from 0.058 to 84.380 μM). Equisetin (8) showed bactericidal activities against Bacillus cereus and Listeria monocytogenes (MBC values of 7.8 and 31.25 µM, respectively), and bacteriostatic activity against Enterococcus faecalis (MIC value of 31.25 µM). Compounds 2 and 4 showed bacteriostatic activities against Listeria monocytogenes (MIC of 125 µM).
Collapse
Affiliation(s)
- Giang Nam Pham
- Marine Natural Products Team, Institut de Chimie de Nice, Université Côte d’Azur, CNRS, UMR 7272, 06108 Nice, France; (G.N.P.); (A.C.)
| | - Béatrice Josselin
- Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, Sorbonne Université, CNRS, UMR 8227, 29680 Roscoff, France (B.B.)
- Plateforme de Criblage KISSf (Kinase Inhibitor Specialized Screening Facility), Station Biologique de Roscoff, Sorbonne Université, CNRS, FR2424, 29680 Roscoff, France
| | - Arnaud Cousseau
- Marine Natural Products Team, Institut de Chimie de Nice, Université Côte d’Azur, CNRS, UMR 7272, 06108 Nice, France; (G.N.P.); (A.C.)
- Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, Sorbonne Université, CNRS, UMR 8227, 29680 Roscoff, France (B.B.)
| | - Blandine Baratte
- Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, Sorbonne Université, CNRS, UMR 8227, 29680 Roscoff, France (B.B.)
- Plateforme de Criblage KISSf (Kinase Inhibitor Specialized Screening Facility), Station Biologique de Roscoff, Sorbonne Université, CNRS, FR2424, 29680 Roscoff, France
| | - Marie Dayras
- Marine Natural Products Team, Institut de Chimie de Nice, Université Côte d’Azur, CNRS, UMR 7272, 06108 Nice, France; (G.N.P.); (A.C.)
| | - Christophe Le Meur
- Laboratoire Universitaire de Biodiversité et Écologie Microbienne, Université de Brest, INRAE, 29280 Plouzané, France
| | - Stella Debaets
- Laboratoire Universitaire de Biodiversité et Écologie Microbienne, Université de Brest, INRAE, 29280 Plouzané, France
| | - Amélie Weill
- Laboratoire Universitaire de Biodiversité et Écologie Microbienne, Université de Brest, INRAE, 29280 Plouzané, France
| | - Thomas Robert
- Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, Sorbonne Université, CNRS, UMR 8227, 29680 Roscoff, France (B.B.)
- Plateforme de Criblage KISSf (Kinase Inhibitor Specialized Screening Facility), Station Biologique de Roscoff, Sorbonne Université, CNRS, FR2424, 29680 Roscoff, France
| | - Gaëtan Burgaud
- Laboratoire Universitaire de Biodiversité et Écologie Microbienne, Université de Brest, INRAE, 29280 Plouzané, France
| | - Ian Probert
- Roscoff Culture Collection, Station Biologique de Roscoff, Sorbonne Université, CNRS, FR2424, 29680 Roscoff, France
| | - Fatouma Mohamed Abdoul-Latif
- Medicinal Research Institute, Center for Studies and Research of Djibouti, IRM-CERD, Route de l’Aéroport, Haramous, Djibouti City P.O. Box 486, Djibouti;
| | - Laurent Boyer
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Bâtiment Universitaire ARCHIMED, 151 Route de Saint Antoine de Ginestière BP, 23194 Nice, France
| | - Stéphane Bach
- Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, Sorbonne Université, CNRS, UMR 8227, 29680 Roscoff, France (B.B.)
- Plateforme de Criblage KISSf (Kinase Inhibitor Specialized Screening Facility), Station Biologique de Roscoff, Sorbonne Université, CNRS, FR2424, 29680 Roscoff, France
| | - Mohamed Mehiri
- Marine Natural Products Team, Institut de Chimie de Nice, Université Côte d’Azur, CNRS, UMR 7272, 06108 Nice, France; (G.N.P.); (A.C.)
| |
Collapse
|
3
|
Guo P, Li Z, Cai T, Guo D, Yang B, Zhang C, Shan Z, Wang X, Peng X, Liu G, Shi C, Alharbi M, Alasmari AF. Inhibitory effect and mechanism of oregano essential oil on Listeria monocytogenes cells, toxins and biofilms. Microb Pathog 2024; 194:106801. [PMID: 39025378 DOI: 10.1016/j.micpath.2024.106801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/12/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Listeria monocytogenes (L. monocytogenes) is a prevalent foodborne pathogen with a remarkable capacity to form biofilms on utensil surfaces. The Listeriolysin O (LLO) exhibits hemolytic activity, which is responsible for causing human infections. In this study, we investigated the inhibitory effect and mechanism of oregano essential oil (OEO) on L. monocytogenes, evaluated the effects on its biofilm removal and hemolytic activity. The minimum inhibitory concentration (MIC) of OEO against L. monocytogenes was 0.03 % (v/v). L. monocytogenes was treated with OEO at 3/2 MIC for 30 min the bacteria was decreased below the detection limit (10 CFU/mL) in PBS and TSB (the initial bacterial load was about 6.5 log CFU/mL). The level of L. monocytogenes in minced pork co-cultured with OEO (15 MIC) about 2.5 log CFU/g lower than that in the untreated group. The inhibitory mechanisms of OEO against planktonic L. monocytogenes encompassed perturbation of cellular morphology, elevation in reactive oxygen species levels, augmentation of lipid oxidation extent, hyperpolarization of membrane potential, and reduction in intracellular ATP concentration. In addition, OEO reduced biofilm coverage on the surface of glass slides by 62.03 % compared with the untreated group. Meanwhile, OEO (1/8 MIC) treatment reduced the hemolytic activity of L. monocytogenes to 24.6 % compared with the positive control. Molecular docking suggested carvacrol and thymol might reduce the hemolytic activity of L. monocytogenes. The results of this study demonstrate that OEO exhibits inhibitory effects against L. monocytogenes, biofilms and LLO, which had potential as natural antimicrobial for the inhibition of L. monocytogenes.
Collapse
Affiliation(s)
- Peng Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhenye Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ting Cai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Du Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chunling Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhongguo Shan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoli Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Guorong Liu
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, China.
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China; Northwest A&F University ShenZhen Research Institute, Shenzhen, Guangdong, 518057, China.
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
4
|
Cao S, Wang T, Ren Y, Wu G, Zhang Y, Tan Y, Zhou Y, Chen H, Zhang Y, Song Y, Yang R, Du Z. A protein O-GlcNAc glycosyltransferase regulates the antioxidative response in Yersinia pestis. Nat Commun 2024; 15:7062. [PMID: 39152136 PMCID: PMC11329713 DOI: 10.1038/s41467-024-50959-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/23/2024] [Indexed: 08/19/2024] Open
Abstract
Post-translational addition of O-linked N-acetylglucosamine (O-GlcNAc) to proteins is commonly associated with a variety of stress responses and cellular processes in eukaryotes, but its potential roles in bacteria are unclear. Here, we show that protein HmwC acts as an O-GlcNAc transferase (OGT) responsible for O-GlcNAcylation of multiple proteins in Yersinia pestis, a flea-borne pathogen responsible for plague. We identify 64 O-GlcNAcylated proteins (comprising 65 sites) with differential abundance under conditions mimicking the mammalian host (Mh) and flea vector (Fv) environments. Deletion of hmwC, encoding a putative OGT, structurally distinct from any existing member of the GT41 family, results in reduced O-GlcNAcylation, reduced growth, and alterations in virulence properties and survival under stress. Purified HmwC can modify target proteins in vitro using UDP-GlcNAc as sugar donor. One of the target proteins, OsdY, promotes Y. pestis survival under oxidative stress conditions. Thus, our results support that regulation of antioxidative responses through O-GlcNAcylation may be a conserved process shared by prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Shiyang Cao
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Tong Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Yifan Ren
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Gengshan Wu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Yuan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Yafang Tan
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Yazhou Zhou
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Hongyan Chen
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Yu Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China.
| | - Zongmin Du
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China.
| |
Collapse
|
5
|
Lin S, Song Y, Sun Y, Lin W, Yu G, Liao X, Yang Q. Morpholine-modified Ru-based agents with multiple antibacterial mechanisms as metalloantibiotic candidates against Staphylococcus aureus infection. RSC Adv 2024; 14:20130-20144. [PMID: 38915333 PMCID: PMC11194541 DOI: 10.1039/d4ra02667e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/06/2024] [Indexed: 06/26/2024] Open
Abstract
Multidrug-resistant bacteria resulting from the abuse and overuse of antibiotics have become a huge crisis in global public health security. Therefore, it is urgently needed to develop new antibacterial drugs with unique mechanisms of action. As a versatile moiety, morpholine has been widely employed to enhance the potency of numerous bioactive molecules. In this study, a series of ruthenium-based antibacterial agents modified with the morpholine moiety were designed and characterized, aiming to obtain a promising metalloantibiotic with a multitarget mechanism. Antibacterial activity screening demonstrated that the most active complex Ru(ii)-3 exhibited the strongest potency against Staphylococcus aureus (S. aureus) with an MIC value of only 0.78 μg mL-1, which is better than most clinically used antibiotics. Notably, Ru(ii)-3 not only possessed excellent bactericidal efficacy, but could also overcome bacterial resistance. Importantly, Ru(ii)-3 very efficiently removed biofilms produced by bacteria, inhibited the secretion of bacterial exotoxins, and enhanced the activity of many existing antibiotics. The results of mechanism studies confirmed that Ru(ii)-3 could destroy the bacterial membrane and induce ROS production in bacteria. Furthermore, animal infection models confirmed that Ru(ii)-3 showed significant anti-infective activity in vivo. Overall, this work demonstrated that a morpholine-modified ruthenium-based agent is a promising antibiotic candidate in tackling the crisis of drug-resistant bacteria.
Collapse
Affiliation(s)
- Shijie Lin
- Department of Pharmacy, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University) Haikou 570311 China
| | - Yun Song
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University Nanchang 330013 China
| | - Yajuan Sun
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University Nanchang 330013 China
| | - Wenjing Lin
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University Nanchang 330013 China
| | - Guangying Yu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University Nanchang 330013 China
| | - Xiangwen Liao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University Nanchang 330013 China
| | - Qiang Yang
- Department of Clinical Pharmacy, Hainan Cancer Hospital Haikou 570100 China
| |
Collapse
|
6
|
Han X, Fu L, Yu J, Li K, Deng Z, Shu R, Wang D, You J, Zeng EY. Effects of erythromycin on biofilm formation and resistance mutation of Escherichia coli on pristine and UV-aged polystyrene microplastics. WATER RESEARCH 2024; 256:121628. [PMID: 38677035 DOI: 10.1016/j.watres.2024.121628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/23/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024]
Abstract
Microplastics (MPs) and antibiotics co-occur widely in the environment and pose combined risk to microbial communities. The present study investigated the effects of erythromycin on biofilm formation and resistance mutation of a model bacterium, E. coli, on the surface of pristine and UV-aged polystyrene (PS) MPs sized 1-2 mm. The properties of UV-aged PS were significantly altered compared to pristine PS, with notable increases in specific surface area, carbonyl index, hydrophilicity, and hydroxyl radical content. Importantly, the adsorption capacity of UV-aged PS towards erythromycin was approximately 8-fold higher than that of pristine PS. Biofilms colonizing on UV-aged PS had a greater cell count (5.6 × 108 CFU mg-1) and a higher frequency of resistance mutation (1.0 × 10-7) than those on pristine PS (1.4 × 108 CFU mg-1 and 1.4 × 10-8, respectively). Moreover, erythromycin at 0.1 and 1.0 mg L-1 significantly (p < 0.05) promoted the formation and resistance mutation of biofilm on both pristine and UV-aged PS. DNA sequencing results confirmed that the biofilm resistance was attributed to point mutations in rpoB segment of the bacterial genome. qPCR results demonstrated that both UV aging and erythromycin repressed the expression levels of a global regulator rpoS in biofilm bacteria, as well as two DNA mismatch repair genes mutS and uvrD, which was likely to contribute to increased resistance mutation frequency.
Collapse
Affiliation(s)
- Xiaofeng Han
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and Center for Environmental Microplastics Studies, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Long Fu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and Center for Environmental Microplastics Studies, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Jing Yu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and Center for Environmental Microplastics Studies, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Kunting Li
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and Center for Environmental Microplastics Studies, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | | | | | - Dali Wang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and Center for Environmental Microplastics Studies, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China.
| | - Jing You
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and Center for Environmental Microplastics Studies, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Eddy Y Zeng
- Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
7
|
Wang L, Zheng J, Hou W, Zhang C, Zhang J, Fan X, Zhang H, Han Y. The Anti-Microbial Peptide Citrocin Controls Pseudomonas aeruginosa Biofilms by Breaking Down Extracellular Polysaccharide. Int J Mol Sci 2024; 25:4122. [PMID: 38612931 PMCID: PMC11012989 DOI: 10.3390/ijms25074122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/31/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Citrocin is an anti-microbial peptide that holds great potential in animal feed. This study evaluates the anti-microbial and anti-biofilm properties of Citrocin and explores the mechanism of action of Citrocin on the biofilm of P. aeruginosa. The results showed that Citrocin had a significant inhibitory effect on the growth of P. aeruginosa with a minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 0.3 mg/mL. All five concentrations (1/4MIC, 1/2MIC, MIC, 2MIC, and 4MIC) of Citrocin inhibited P. aeruginosa biofilm formation. Citrocin at the MIC, 2MIC and 4MIC removed 42.7%, 76.0% and 83.2% of mature biofilms, respectively, and suppressed the swarming motility, biofilm metabolic activity and extracellular polysaccharide production of P. aeruginosa. Metabolomics analysis indicated that 0.3 mg/mL of Citrocin up- regulated 26 and down-regulated 83 metabolites, mainly comprising amino acids, fatty acids, organic acids and sugars. Glucose and amino acid metabolic pathways, including starch and sucrose metabolism as well as arginine and proline metabolism, were highly enriched by Citrocin. In summary, our research reveals the anti-biofilm mechanism of Citrocin at the metabolic level, which provides theoretical support for the development of novel anti-biofilm strategies for combatting P. aeruginosa.
Collapse
Affiliation(s)
- Liyao Wang
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China; (L.W.); (J.Z.); (W.H.); (C.Z.); (J.Z.); (X.F.); (H.Z.)
- College of Life Science and Technology, Southeast University, Nanjing 211189, China
| | - Jiaqi Zheng
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China; (L.W.); (J.Z.); (W.H.); (C.Z.); (J.Z.); (X.F.); (H.Z.)
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Wenchao Hou
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China; (L.W.); (J.Z.); (W.H.); (C.Z.); (J.Z.); (X.F.); (H.Z.)
| | - Chaowen Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China; (L.W.); (J.Z.); (W.H.); (C.Z.); (J.Z.); (X.F.); (H.Z.)
| | - Jie Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China; (L.W.); (J.Z.); (W.H.); (C.Z.); (J.Z.); (X.F.); (H.Z.)
| | - Xuanbo Fan
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China; (L.W.); (J.Z.); (W.H.); (C.Z.); (J.Z.); (X.F.); (H.Z.)
| | - Hongliang Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China; (L.W.); (J.Z.); (W.H.); (C.Z.); (J.Z.); (X.F.); (H.Z.)
- College of Animal Science and Technology, China Agricultural University, Beijing 100083, China
| | - Yuzhu Han
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China; (L.W.); (J.Z.); (W.H.); (C.Z.); (J.Z.); (X.F.); (H.Z.)
- Chongqing Key Laboratory of Herbivore Science, Chongqing 402460, China
| |
Collapse
|
8
|
Wu C, Zhang Y, Han M, Zhang R, Li H, Wu F, Wu A, Wang X. Selenium-based nanozyme as a fluorescence-enhanced probe and imaging for chlortetracycline in living cells and foods. Food Chem 2024; 432:137147. [PMID: 37639889 DOI: 10.1016/j.foodchem.2023.137147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023]
Abstract
Developing rapid monitoring methods to detect antibiotic residues in food plays an important role in safeguarding human health. This study presents the development of a novel fluorescence-enhanced detection method for chlortetracycline (CTC) using a GSH-Se nanozyme. A GSH-Se nanozyme prepared using a one-pot hydrothermal method not only possesses excellent fluorescent properties but also exhibits good glutathione peroxidase-like activity. The results show that the addition of CTC leads to a significant enhancement in the fluorescence intensity of GSH-Se, and this increase exhibits a good linear relationship with the concentration of CTC. The linear range of this method is 0.02-1 µM, and the limit of detection (LOD) for CTC was 0.02 µM. Moreover, the cell toxicity of GSH-Se is low and can be used for monitoring and imaging of CTC in cells, and satisfactory results have been obtained in the analysis of actual food samples.
Collapse
Affiliation(s)
- Caimei Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, China
| | - Yuwei Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, China
| | - Ming Han
- College of Science, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Ruinan Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, China
| | - Hua Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, China
| | - Fali Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, China
| | - Aimin Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, China
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
9
|
Wang S, Liu S, Hao G, Zhao L, Lü X, Wang H, Wang L, Zhang J, Ge W. Antimicrobial activity and mechanism of isothiocyanate from Moringa oleifera seeds against Bacillus cereus and Cronobacter sakazakii and its application in goat milk. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
10
|
Wu W, Mu Y, Tan J, Wang Z, Zhang C, Li G, Jin Y, Huang X, Han L. Discovery of antibacterial agents targeting biofilm formation: total synthesis and in vitro investigation of amycolasporins. Org Biomol Chem 2022; 20:6831-6843. [PMID: 35968752 DOI: 10.1039/d2ob01166b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three monoterpene alkaloids amycolasporin A and (±) amycolasporins B and C have been synthesized for the first time from commercially available materials in yields of 31%, 14% and 21%, respectively. Their six analogues (18, 19, 30a and 30d-30f) were synthesized through a similar protocol. Meanwhile, the antibacterial activity of all synthesized molecules was evaluated, showing different levels of bioactivity. Among them, analogue 30d was screened as the most effective antibacterial candidate against E. coli (MIC value, 12.5 μg mL-1) and S. aureus (MIC value, 12.5 μg mL-1). Further investigation showed that 30d obviously inhibited biofilm formation and disrupted the preformed biofilm of E. coli and S. aureus by promoting intracellular ROS release.
Collapse
Affiliation(s)
- Wenxi Wu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| | - Yu Mu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| | - Junfeng Tan
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| | - Zixuan Wang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| | - Chen Zhang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| | - Guiding Li
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| | - Ying Jin
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| | - Xueshi Huang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| | - Li Han
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
11
|
WANG C, CHEN Y. Preparation of peptides from oyster shells and investigation of their in vitro antioxidant activities. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.51522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
De Vela RJ, Wigley K, Baronian K, Gostomski PA. Effect of metabolic uncouplers on the performance of toluene-degrading biotrickling filter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41881-41895. [PMID: 33791957 DOI: 10.1007/s11356-021-13708-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
The biomass control potential of three metabolic uncouplers (carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), carbonyl cyanide m-chlorophenylhydrazone (CCCP), and m-chlorophenol (m-CP)) was tested in biotrickling filters (BTFs) degrading toluene. The experiments employed two types of reactors: a traditional column design and a novel differential BTF (DBTF) reactor developed by De Vela and Gostomski (J Environ Eng 147:04020159, 2021). Uncouplers caused the toluene elimination capacity (EC) (~33 g/m3h for column reactors and ~600 g/m3h for DBTF) to decrease by 15-97% in a dose-dependent fashion. The EC completely recovered in the column reactor in 3 to 13 days, while only partial recovery happened in the DBTF. Short-term (1 to 3 days) true uncoupling was indicated by the 20-160% increase in %CO2 recovery, depending on concentration. FCCP and CCCP increased the pressure drop due to increased extracellular polymeric substances (EPS) production for protection against the uncouplers. The 4.0-mM m-CP weakened the biofilm in the BTF bed, as evidenced by the 130-500% increase in the total organic carbon in the liquid sump of the column and DBTF reactors. Moreover, a microbial shift led to the proliferation of genera that degrade uncouplers, further demonstrating that the uncouplers tested were not a sustainable biomass control strategy in BTFs.
Collapse
Affiliation(s)
- Roger Jay De Vela
- Chemical and Process Engineering Department, University of Canterbury, Christchurch, New Zealand.
- Camarines Norte State College, F. Pimentel Avenue, 4600, Daet, Camarines Norte, Philippines.
| | - Kathryn Wigley
- Chemical and Process Engineering Department, University of Canterbury, Christchurch, New Zealand
| | - Kim Baronian
- Chemical and Process Engineering Department, University of Canterbury, Christchurch, New Zealand
| | - Peter Alan Gostomski
- Chemical and Process Engineering Department, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
13
|
Effects of the Quinone Oxidoreductase WrbA on Escherichia coli Biofilm Formation and Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10060919. [PMID: 34204135 PMCID: PMC8229589 DOI: 10.3390/antiox10060919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 12/31/2022] Open
Abstract
The effects of natural compounds on biofilm formation have been extensively studied, with the goal of identifying biofilm formation antagonists at sub-lethal concentrations. Salicylic and cinnamic acids are some examples of these compounds that interact with the quinone oxidoreductase WrbA, a potential biofilm modulator and an antibiofilm compound biomarker. However, WrbA’s role in biofilm development is still poorly understood. To investigate the key roles of WrbA in biofilm maturation and oxidative stress, Escherichia coli wild-type and ∆wrbA mutant strains were used. Furthermore, we reported the functional validation of WrbA as a molecular target of salicylic and cinnamic acids. The lack of WrbA did not impair planktonic growth, but rather affected the biofilm formation through a mechanism that depends on reactive oxygen species (ROS). The loss of WrbA function resulted in an ROS-sensitive phenotype that showed reductions in biofilm-dwelling cells, biofilm thickness, matrix polysaccharide content, and H2O2 tolerance. Endogenous oxidative events in the mutant strain generated a stressful condition to which the bacterium responded by increasing the catalase activity to compensate for the lack of WrbA. Cinnamic and salicylic acids inhibited the quinone oxidoreductase activity of purified recombinant WrbA. The effects of these antibiofilm molecules on WrbA function was proven for the first time.
Collapse
|
14
|
Rahman APH, Dash S, Mohanty PS, Mishra A, Lundborg CS, Tripathy SK. Sonophotocatalytic disinfection of Shigella species under visible light irradiation: Insights into its molecular mechanism, antibacterial resistance and biofilm formation. ENVIRONMENTAL RESEARCH 2020; 187:109620. [PMID: 32416355 DOI: 10.1016/j.envres.2020.109620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/25/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
Microbial contamination of water is one of the major sources of many diseases worldwide. Evolution of antibacterial resistance (ABR) alongside the caveats in most of the water treatment methods causes the severity of the current problem extremely vexing. This calls for an urgent need to develop new treatment methods aiming to reduce the microbial as well as ABR load in the environment. Herein, we successfully developed a visible light assisted sonophotocatalysis (SPC) using Fe/ZnO nanoparticles (NPs) for the disinfection of Shigella dysenteriae. A consortia containing S. dysenteriae and S. flexineri was also completely disinfected using SPC. Growth conditions of S. dysenteriae like growth phases and growth temperaturehad different outcomes on the overall efficacy of SPC. Compared with catalysts such as ZnO and TiO2, Fe/ZnO resulted in better disinfection. Multi-ROS production, mostly containing h+ and O2· radicals, due to the electron displacement in the catalyst and acoustic cavitation was identified as the factors behind bacterial lethality. The ROS produced was found to interfere with the metabolic activities of S. dysenteriae by causing membrane perturbation. We identified DNA damage inside the cells and the subsequent release of intracellular components. The compositional changes in the fatty acid makeup of the cells were altered as a result of SPC and few fatty acid markers indicating the stress posed by SPC were also identified. Loss of ABR in S. dysenteriae was also recorded post SPC treatment. Abatement in the biofilm forming ability of the injured bacterial cells was also recorded, proving the extremity of stress induced by SPC. Hence, the excellent efficacy of SPC in disinfecting bacteria is proposed for tertiary water treatment applications.
Collapse
Affiliation(s)
- A P Habeeb Rahman
- School of Chemical Technology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, Odisha, India; School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, Odisha, India
| | - Swagatika Dash
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, Odisha, India
| | - Priti Sundar Mohanty
- School of Chemical Technology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, Odisha, India
| | - Amrita Mishra
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, Odisha, India
| | | | - Suraj K Tripathy
- School of Chemical Technology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, Odisha, India; School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, Odisha, India.
| |
Collapse
|
15
|
Preliminary evaluation of irradiated medium and the optimization of conditions for a catalase produced by Bacillus firmus GL3. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-019-00357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|