1
|
Liu Y, Qu W, Liu Y, Tuly JA, Ma H. MD simulation to comprehend polygalacturonase inactivation mechanism during thermal and non-thermal effects of infrared processing. Food Chem 2024; 441:138298. [PMID: 38199103 DOI: 10.1016/j.foodchem.2023.138298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/16/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024]
Abstract
Food quality is greatly impacted by traditional heat methods for polygalacturonase (PG) inactivation; therefore, it's imperative to develop a novel infrared (IR) inactivation approach and identify its mechanism. Utilizing molecular dynamics (MD) simulation, this study verified the PG's activity, structure, active sites, and substrate channel under the single thermal and non-thermal effects of IR. PG activity was significantly reduced by IR, and structure was unfolded by increasing random coils (65.62 %) and decreasing β-sheets (29.11 %). MD data indicated that the relative locations of PG's active sites were altered by both IR effects, and the enzyme-substrate channel was shortened (10.53 % at 18 μm and 15.79 % at 80 °C). The thermal effect of IR on the inactivation of PG was significantly more pronounced than its non-thermal effect. This study unveiled the mechanism by which the infrared disrupted PG's activity, active sites, and substrate channels; thus, it expanded the infrared technique's efficacy in enzyme control.
Collapse
Affiliation(s)
- Ying Liu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Wenjuan Qu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China.
| | - Yuxuan Liu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Jamila A Tuly
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| |
Collapse
|
2
|
Saifullah B, Arulselvan P, El Zowalaty ME, Tan WS, Fakurazi S, Webster TJ, Baby R, Hussein MZ. A Novel Para-Amino Salicylic Acid Magnesium Layered Hydroxide Nanocomposite Anti-Tuberculosis Drug Delivery System with Enhanced in vitro Therapeutic and Anti-Inflammatory Properties. Int J Nanomedicine 2021; 16:7035-7050. [PMID: 34703226 PMCID: PMC8526802 DOI: 10.2147/ijn.s297040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/09/2021] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Mycobacterium tuberculosis infections are associated with severe local inflammatory reactions, which may be life-threatening and lead to tuberculosis pathogenesis and associated complications. Inorganic nanolayers have been vastly exploited for biomedical applications (especially in drug delivery) because of their biocompatible and biodegradable nature with the ability to release a drug in a sustained manner. Herein, we report a new nanodelivery system of inorganic nanolayers based on magnesium layered hydroxides (MgLH) and a successfully intercalated anti-tuberculosis drug para-aminosalicylic acid (PAS). METHODS The designed anti-tuberculosis nanodelivery composite, MgLH-PAS, was prepared by a novel co-precipitation method using MgNO3 as well MgO as starting materials. RESULTS The designed nano-formulation, PAS-MgLH, showed good antimycobacterial and antimicrobial activities with significant synergistic anti-inflammatory effects on the suppression of lipopolysaccharide (LPS) stimulated inflammatory mediators in RAW 264.7 macrophages. The designed nano-formulation was also found to be biocompatible with human normal lung cells (MRC-5) and 3T3 fibroblast cells. Furthermore, the in vitro release of PAS from PAS-MgLH was found to be sustained in human body simulated phosphate buffer saline (PBS) solutions of pH 7.4 and pH 4.8. DISCUSSION The results of the present study are highly encouraging for further in vivo studies. This new nanodelivery system, MgLH, can be exploited in the delivery of other drugs and in numerous other biomedical applications as well.
Collapse
Affiliation(s)
- Bullo Saifullah
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Management Sciences and Technology, The Begum Nusrat Bhutto Women University Sukkur, Sukkur, Sindh, 65170, Pakistan
| | - Palanisamy Arulselvan
- Laboratory for Vaccine and Immunotherapeutics, Institute of Biosciences, University Putra Malaysia, Serdang, Selangor, 43400, Malaysia
- Muthayammal Centre for Advanced Research, Muthayammal College of Arts and Science, Namakkal, Tamil Nadu, 637408, India
| | - Mohamed E El Zowalaty
- Laboratory for Vaccine and Immunotherapeutics, Institute of Biosciences, University Putra Malaysia, Serdang, Selangor, 43400, Malaysia
- Zoonosis Science Center, Department of Microbiology and Immunology, Uppsala University, Uppsala, Sweden
| | - Woan Sean Tan
- Laboratory for Vaccine and Immunotherapeutics, Institute of Biosciences, University Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Rabia Baby
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Zobir Hussein
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
3
|
New potential drug leads against MDR-MTB: A short review. Bioorg Chem 2019; 95:103534. [PMID: 31884135 DOI: 10.1016/j.bioorg.2019.103534] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/26/2019] [Accepted: 12/20/2019] [Indexed: 12/25/2022]
Abstract
Multidrug resistant Mycobacterium tuberculosis (MDR-MTB) infections have created a critical health problem globally. The appalling rise in drug resistance to all the current therapeutics has triggered the need for identifying new antimycobacterial agents effective against multidrug-resistant Mycobacterium tuberculosis. Structurally unique chemical entities with new mode of action will be required to combat this pressing issue. This review gives an overview of the structures and outlines on various aspects of in vitro pharmacological activities of new antimycobacterial agents, mechanism of action and brief structure activity relationships in the perspective of drug discovery and development. This review also summarizes on recent reports of new antimycobacterial agents.
Collapse
|