1
|
Zeng F, He J, Jin X, Liao Q, Chen Z, Peng H, Zhou Y. FRA-1: A key factor regulating signal transduction of tumor cells and a potential target molecule for tumor therapy. Biomed Pharmacother 2022; 150:113037. [PMID: 35658206 DOI: 10.1016/j.biopha.2022.113037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 11/19/2022] Open
Abstract
Fos-related antigen-1 (FRA-1) is a member of activator protein-1 (AP-1) transcription factor superfamily, and FRA-1 is highly expressed in colon cancer, breast cancer, gastric cancer, lung cancer, bladder cancer, and other tumors. The expression level of FRA-1 is closely related to the processes of tumor cell proliferation, apoptosis, transformation, migration, and invasion, which is a potential therapeutic target and prognostic factor for many tumors. Clarifying the detailed mechanism of action of FRA-1 could provide the theoretical basis for tumor diagnosis, treatment, and prognosis, and is of great significance for the study of tumor etiology and pathogenesis. In this paper, the expression levels and influencing factors of FRA-1 in various tumor tissues and cells are summarized, as well as the effect of FRA-1 expression level on the biological behavior of tumor cells and the signal transduction mechanism. At the same time, the signal transduction mechanism of FRA-1 in inflammation was expounded. In addition, the related metabolites, drugs and non-coding RNA that affect the expression and function of FRA-1 were summarized. Finally, it illustrates that FRA-1 may be taken as a key factor for tumor prognosis and a potential therapeutic target. This review provides a theoretical basis for the systematic understanding of the relationship between FRA-1 and tumors, its function, and possible mechanism.
Collapse
Affiliation(s)
- Feng Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Junyu He
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Xi Jin
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Zhifang Chen
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Honghua Peng
- Department of The Oncology, Third Xianya Hospital, Xiangya School of Medicine, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, China.
| | - Yanhong Zhou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
2
|
FRA-1 suppresses apoptosis of Helicobacter pylori infected MGC-803 cells. Mol Biol Rep 2021; 48:611-621. [PMID: 33389529 DOI: 10.1007/s11033-020-06105-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/18/2020] [Indexed: 12/24/2022]
Abstract
Previous research has demonstrated a correlation between elevated expression of Fos-related antigen 1 (FRA-1) and malignancies. Nevertheless, the role of FRA-1 in Helicobacter pylori infected gastric cancer cells remains vague. Our study aims to investigate whether FRA-1 plays a role in the apoptosis of MGC-803 induced by H. pylori and possible mechanisms. MGC-803 cells were used in vitro to establish a cell model of H. pylori infection. After stimulation with H. pylori, the expression of FRA-1 was increased in MGC-803 cells. H. pylori infection promoted the apoptosis of MGC-803 cells, and led to cell cycle arrest and increased oxidative stress levels. Furthermore, the knockdown of FRA-1 reinforced these changes. H. pylori decreased the expression of Bcl2, Caspase3 and Caspase9, while increased the level of BAX, Cleaved-Caspase3 and Cleaved-Caspase9; in addition, it led to the decrease of major proteins in Ras/Erk and PI3K/AKT signaling pathway. As expected, these changes were augmented by FRA-1 knockdown. Our results demonstrated that high expression of FRA-1 induced by H. pylori suppresses apoptosis in MGC-803 cells which may be regulated by oxidative stress and cycle arrest through caspase family, Ras/Erk and PI3K/AKT signaling pathway.
Collapse
|
3
|
Zhao X, Sun W, Ren Y, Lu Z. Therapeutic potential of p53 reactivation in cervical cancer. Crit Rev Oncol Hematol 2020; 157:103182. [PMID: 33276182 DOI: 10.1016/j.critrevonc.2020.103182] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 10/23/2020] [Accepted: 11/11/2020] [Indexed: 12/19/2022] Open
Abstract
Cervical cancer (CC) is one of most common malignancies affecting women worldwide. To date, surgical resection is the only effective radical remedy for CC at its early stages, while the prognosis of metastatic or recurrent CC is very poor. Dysfunction of the tumor suppressor p53 due to aberrant expression, post-translational modification, mutations, SNPs, and LOH as well as sequestration by viral antigens and MDM2/HDM2-mediated degradation is closely associated with the therapeutic insensitivity and relapse of many malignancies, including CC. Accumulating studies have demonstrated that restoration of p53 activity can induce cell cycle arrest and apoptosis, eliminate radio- and chemotherapy resistance, and inhibit tumor growth in CC cells. Therefore, activation of wild-type p53 as well as restoration of p53 function seems appealing as a therapeutic strategy. In this review, we focus on the potential roles of p53 reactivation in CC treatment and their underlying molecular mechanisms towards the development of novel therapies.
Collapse
Affiliation(s)
- Xiangxuan Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, LN, China.
| | - Wei Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, LN, China
| | - Ying Ren
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, LN, China
| | - Zaiming Lu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, LN, China
| |
Collapse
|
4
|
Expression and function of FRA1 protein in tumors. Mol Biol Rep 2019; 47:737-752. [PMID: 31612408 DOI: 10.1007/s11033-019-05123-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/09/2019] [Indexed: 12/24/2022]
Abstract
AP-1 is a dimeric complex that is composed of JUN, FOS, ATF and MAF protein families. FOS-related antigen 1 (FRA1) which encoded by FOSL1 gene, belongs to the FOS protein family, and mainly forms an AP-1 complex with the protein of the JUN family to exert an effect. Regulation of FRA1 occurs at levels of transcription and post-translational modification, and phosphorylation is the major post-translational modification. FRA1 is mainly regulated by the mitogen-activated protein kinases signaling pathway and is degraded by ubiquitin-independent proteasomes. FRA1 can affect biological functions, such as tumor proliferation, differentiation, invasion and apoptosis. Studies have demonstrated that FRA1 is abnormally expressed in many tumors and plays a relevant role, but the specific condition varies from the target organs. FRA1 is overexpressed in breast cancer, lung cancer, colorectal cancer, prostate cancer, nasopharyngeal cancer, thyroid cancer and other tumors. However, the expression of FRA1 is decreased in cervical cancer, and the expression of FRA1 in ovarian cancer and oral squamous cell carcinoma is still controversial. In this review, we present a detailed description of the regulatory factors and functions of FRA1, also, the expression of FRA1 in various tumors and its function in relative tumor.
Collapse
|