1
|
Zhang C, Li H, Zhao Q, Wang L, Hou G, Shi Q, Wu T, Gao G, Zhang Z. Drug resistance and pathogenicity characteristics of Escherichia coli causing pneumonia in farmed foxes. Front Vet Sci 2025; 12:1567009. [PMID: 40271487 PMCID: PMC12016882 DOI: 10.3389/fvets.2025.1567009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/28/2025] [Indexed: 04/25/2025] Open
Abstract
Bacterial pneumonia is a leading cause of mortality in fur-bearing animals, posing significant threat to fur production. To clarify the pathogenic agent of bacterial pneumonia in farmed foxes from eastern Hebei province, China, we performed bacterial isolation and identification from samples between 2020 and 2023. A total of 142 bacterial strains were isolated, of which 101 were identified as Escherichia coli (E. coli), indicating that E. coli is the major cause responsible for bacterial pneumonia in farmed foxes. Serotyping identification showed that a total of 8 serotypes were prevalent in the E. coli isolates, with O1, O8, O78 and O12 being the dominant ones. Five E. coli isolates were randomly picked for pathogenicity testing, and all of them were able to cause pneumonia symptoms in 6-week-old Kunming mice, accompanied by organ damage in lung. Eleven virulence genes were demonstrated present among the E. coli isolates. Antibiotic susceptibility tests showed that 78 of 101 E. coli strains exhibited multi-drug resistance (MDR), with the highest resistance rates against tetracyclines, and some strains showed resistance to carbapenems. Notably, no single antibiotic was effective against all strains. Twenty antibiotic resistance genes (ARGs) were detected among the isolates. Multilocus sequence typing (MLST) revealed 11 sequence types (STs) among 19 E. coli isolates, with ST-101 predominating (4/19). These findings enhance our understanding of the epidemiology, resistance traits, and pathogenicity of fox-derived pathogenic E. coli in Hebei.
Collapse
Affiliation(s)
- Chunxiao Zhang
- Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science and Technology, Qinhuangdao, China
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Hong Li
- Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Qi Zhao
- Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Lili Wang
- Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Guanxin Hou
- Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Qiumei Shi
- Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Tonglei Wu
- Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Guangping Gao
- Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Zhiqiang Zhang
- Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science and Technology, Qinhuangdao, China
| |
Collapse
|
2
|
Zhang X, Lin Y, Xu X, Wen S, Wang Z, Gu J, He Q, Cai X. HtrA is involved in stress response and adhesion in Glaesserella parasuis serovar 5 strain Nagasaki. Vet Microbiol 2023; 282:109748. [PMID: 37120968 DOI: 10.1016/j.vetmic.2023.109748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/28/2023] [Accepted: 04/14/2023] [Indexed: 05/02/2023]
Abstract
Glaesserella parasuis is an important pathogen that causes fibrinous polyserositis, peritonitis and meningitis in pigs, leading to considerable economic losses to the swine industry worldwide. It is well established that the serine protease HtrA is closely associated with bacterial virulence, but the role of HtrA in G. parasuis pathogenesis remains largely unknown. To characterize the function of the htrA gene in G. parasuis, a ΔhtrA mutant was constructed. We found that the ΔhtrA mutant showed significant growth inhibition under heat shock and alkaline stress conditions, indicating HtrA is involved in stress tolerance and survival of G. parasuis. In addition, deletion of htrA gene resulted in decreased adherence to PIEC and PK-15 cells and increased phagocytic resistance to 3D4/2 macrophages, suggesting that htrA is essential for adherence of G. parasuis. Scanning electron microscopy revealed morphological surface changes of the ΔhtrA mutant, and transcription analysis confirmed that a number of adhesion-associated genes are downregulated, which corroborated the aforementioned phenomenon. Furthermore, G. parasuis HtrA induced a potent antibody response in piglets with Glässer's disease. These observations confirmed that the htrA gene is related to the survival and pathogenicity of G. parasuis.
Collapse
Affiliation(s)
- Xuan Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Lin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaojuan Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Siting Wen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhichao Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiayun Gu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Qigai He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuwang Cai
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
3
|
A Regulatory SRNA Rli43 Is Involved in the Modulation of Biofilm Formation and Virulence in Listeria monocytogenes. Pathogens 2022; 11:pathogens11101137. [PMID: 36297193 PMCID: PMC9606912 DOI: 10.3390/pathogens11101137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/11/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022] Open
Abstract
Small RNAs (sRNAs) are a kind of regulatory molecule that can modulate gene expression at the post-transcriptional level, thereby involving alteration of the physiological characteristics of bacteria. However, the regulatory roles and mechanisms of most sRNAs remain unknown in Listeria monocytogenes(L. monocytogenes). To explore the regulatory roles of sRNA Rli43 in L. monocytogenes, the rli43 gene deletion strain LM-Δrli43 and complementation strain LM-Δrli43-rli43 were constructed to investigate the effects of Rli43 on responses to environmental stress, biofilm formation, and virulence, respectively. Additionally, Rli43-regulated target genes were identified using bioinformatic analysis tools and a bacterial dual plasmid reporter system based on E. coli. The results showed that the intracellular expression level of the rli43 gene was significantly upregulated compared with those under extracellular conditions. Compared with the parental and complementation strains, the environmental adaptation, motility, biofilm formation, adhesion, invasion, and intracellular survival of LM-Δrli43 were significantly reduced, respectively, whereas the LD50 of LM-Δrli43 was significantly elevated in BALB/c mice. Furthermore, the bacterial loads and pathological damages were alleviated, suggesting that sRNA Rli43 was involved in the modulation of the virulence of L. monocytogenes. It was confirmed that Rli43 may complementarily pair with the 5'-UTR (-47--55) of HtrA mRNA, thereby regulating the expression level of HtrA protein at the post-transcriptional level. These findings suggest that Rli43-mediated control was involved in the modulation of environmental adaptation, biofilm formation, and virulence in L. monocytogenes.
Collapse
|