1
|
Almarmouri C, El-Gamal MI, Haider M, Hamad M, Qumar S, Sebastian M, Ghemrawi R, Muhammad JS, Burucoa C, Khoder G. Anti-urease therapy: a targeted approach to mitigating antibiotic resistance in Helicobacter pylori while preserving the gut microflora. Gut Pathog 2025; 17:37. [PMID: 40437630 PMCID: PMC12121022 DOI: 10.1186/s13099-025-00708-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 05/07/2025] [Indexed: 06/01/2025] Open
Abstract
The global rise in antibiotic resistance has posed significant challenges to the effective management of Helicobacter pylori (H. pylori), a gastric pathogen linked to chronic gastritis, peptic ulcers, and gastric cancer. Conventional antibiotic therapies, while effective, face significant challenges, such as increasing antibiotic resistance, high recurrence rates, and adverse effects such as gut microflora dysbiosis. These limitations have driven the exploration of alternative antibiotic-free therapies, including the use of plant-based compounds, probiotics, nanoparticles, phage therapy, antimicrobial peptides, and H. pylori vaccines. Among these, urease-targeted therapy has shown particular promise. Urease enables the survival and colonization of H. pylori by neutralizing stomach acidity. Targeting this urease without disrupting beneficial gut microflora offers a selective mechanism to impair H. pylori, due to the absence of this enzyme in most of the human gut microbiome. In this review, we highlight advancements and limitations in the field of antibiotic-free therapies, with a particular focus on anti-urease strategies. We explore the structural and functional characteristics of urease, its role in H. pylori pathogenesis, and its potential as a therapeutic target. For the first time, we provide a comprehensive analysis of natural, semisynthetic, and synthetic anti-urease compounds, emphasizing their mechanisms of action, efficacy, and safety profiles. Advances in silico, in vitro, and in vivo studies have identified several promising anti-urease compounds with high specificity and minimal toxicity. By focusing on urease inhibition as a targeted strategy, this review underscores its potential to overcome antibiotic resistance while minimizing gut dysbiosis and improving the outcomes of H. pylori infection treatment.
Collapse
Affiliation(s)
- Christina Almarmouri
- Department of Pharmaceutics and Pharmaceuticals Technology, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohammed I El-Gamal
- Research Institute for Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed Haider
- Department of Pharmaceutics and Pharmaceuticals Technology, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohamad Hamad
- Research Institute for Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Shamsul Qumar
- Research Institute for Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Merylin Sebastian
- Research Institute for Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Rose Ghemrawi
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Jibran Sualeh Muhammad
- Department of Biomedical Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Christophe Burucoa
- Laboratoire de Bactériologie, U1070 INSERM, CHU de Poitiers, Université de Poitiers, 86000, Poitiers, France
| | - Ghalia Khoder
- Department of Pharmaceutics and Pharmaceuticals Technology, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates.
- Research Institute for Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
2
|
Wang J, Zhang M, Li C, Liu M, Qi Y, Xie X, Zhou C, Ma L. A novel cathelicidin TS-CATH derived from Thamnophis sirtalis combats drug-resistant gram-negative bacteria in vitro and in vivo. Comput Struct Biotechnol J 2024; 23:2388-2406. [PMID: 38882682 PMCID: PMC11176561 DOI: 10.1016/j.csbj.2024.05.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 06/18/2024] Open
Abstract
Antimicrobial peptides are promising therapeutic agents for treating drug-resistant bacterial disease due to their broad-spectrum antimicrobial activity and decreased susceptibility to evolutionary resistance. In this study, three novel cathelicidin antimicrobial peptides were identified from Thamnophis sirtalis, Balaenoptera musculus, and Lipotes vexillifer by protein database mining and sequence alignment and were subsequently named TS-CATH, BM-CATH, and LV-CATH, respectively. All three peptides exhibited satisfactory antibacterial activity and broad antibacterial spectra against clinically isolated E. coli, P. aeruginosa, K. pneumoniae, and A. baumannii in vitro. Among them, TS-CATH displayed the best antimicrobial/bactericidal activity, with a rapid elimination efficiency against the tested drug-resistant gram-negative bacteria within 20 min, and exhibited the lowest cytotoxicity toward mammalian cells. Furthermore, TS-CATH effectively enhanced the survival rate of mice with ceftazidime-resistant E. coli bacteremia and promoted wound healing in meropenem-resistant P. aeruginosa infection. These results were achieved through the eradication of bacterial growth in target organs and wounds, further inhibiting the systemic dissemination of bacteria and the inflammatory response. TS-CATH exhibited direct antimicrobial activity by damaging the inner and outer membranes, resulting in leakage of the bacterial contents at super-MICs. Moreover, TS-CATH disrupted the bacterial respiratory chain, which inhibited ATP synthesis and induced ROS formation, significantly contributing to its antibacterial efficacy at sub-MICs. Overall, TS-CATH has potential for use as an antibacterial agent.
Collapse
Affiliation(s)
- Jian Wang
- Institution of all authors: College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Meina Zhang
- Institution of all authors: College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Chao Li
- Institution of all authors: College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Mengyuan Liu
- Institution of all authors: College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yixin Qi
- Institution of all authors: College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Xiaolin Xie
- Institution of all authors: College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Changlin Zhou
- Institution of all authors: College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Lingman Ma
- Institution of all authors: College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| |
Collapse
|
3
|
Peng C, Feng Z, Ou L, Zou Y, Sang S, Liu H, Zhu W, Gan G, Zhang G, Yao M. Syzygium aromaticum enhances innate immunity by triggering macrophage M1 polarization and alleviates Helicobacter pylori-induced inflammation. J Funct Foods 2023; 107:105626. [DOI: 10.1016/j.jff.2023.105626] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024] Open
|
4
|
Elshenawi Y, Hu S, Hathroubi S. Biofilm of Helicobacter pylori: Life Cycle, Features, and Treatment Options. Antibiotics (Basel) 2023; 12:1260. [PMID: 37627679 PMCID: PMC10451559 DOI: 10.3390/antibiotics12081260] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Helicobacter pylori is a gastric pathogen that infects nearly half of the global population and is recognized as a group 1 carcinogen by the Word Health Organization. The global rise in antibiotic resistance has increased clinical challenges in treating H. pylori infections. Biofilm growth has been proposed to contribute to H. pylori's chronic colonization of the host stomach, treatment failures, and the eventual development of gastric diseases. Several components of H. pylori have been identified to promote biofilm growth, and several of these may also facilitate antibiotic tolerance, including the extracellular matrix, outer membrane proteins, shifted morphology, modulated metabolism, efflux pumps, and virulence factors. Recent developments in therapeutic approaches targeting H. pylori biofilm have shown that synthetic compounds, such as small molecule drugs and plant-derived compounds, are effective at eradicating H. pylori biofilms. These combined topics highlight the necessity for biofilm-based research in H. pylori, to improve current H. pylori-targeted therapeutic approaches and alleviate relative public health burden. In this review we discuss recent discoveries that have decoded the life cycle of H. pylori biofilms and current biofilm-targeted treatment strategies.
Collapse
Affiliation(s)
- Yasmine Elshenawi
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA 95064, USA;
| | - Shuai Hu
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA 95064, USA;
| | - Skander Hathroubi
- Spartha Medical, CRBS 1 Rue Eugène Boeckel, 67000 Strasbourg, France
| |
Collapse
|
5
|
Luo Q, Liu N, Pu S, Zhuang Z, Gong H, Zhang D. A review on the research progress on non-pharmacological therapy of Helicobacter pylori. Front Microbiol 2023; 14:1134254. [PMID: 37007498 PMCID: PMC10063898 DOI: 10.3389/fmicb.2023.1134254] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/03/2023] [Indexed: 03/19/2023] Open
Abstract
Helicobacter pylori is a pathogenic microorganism that mainly resides in the human stomach and is the major cause of chronic gastritis, peptic ulcer and gastric cancer. Up to now, the treatment of Helicobacter pylori has been predominantly based on a combination of antibiotics and proton pump inhibitors. However, the increasing antibiotic resistance greatly limits the efficacy of anti-Helicobacter pylori treatment. Turning to non-antibiotic or non-pharmacological treatment is expected to solve this problem and may become a new strategy for treating Helicobacter pylori. In this review, we outline Helicobacter pylori's colonization and virulence mechanisms. Moreover, a series of non-pharmacological treatment methods for Helicobacter pylori and their mechanisms are carefully summarized, including probiotics, oxygen-rich environment or hyperbaric oxygen therapy, antibacterial photodynamic therapy, nanomaterials, antimicrobial peptide therapy, phage therapy and modified lysins. Finally, we provide a comprehensive overview of the challenges and perspectives in developing new medical technologies for treating Helicobacter pylori without drugs.
Collapse
Affiliation(s)
- Qian Luo
- Department of Gastroenterology, The Second Clinical Medical College of Lanzhou University, LanZhou University Second Hospital, Lanzhou, China
| | - Na Liu
- Department of Gastroenterology, The Second Clinical Medical College of Lanzhou University, LanZhou University Second Hospital, Lanzhou, China
| | - Sugui Pu
- Department of Gastroenterology, The Second Clinical Medical College of Lanzhou University, LanZhou University Second Hospital, Lanzhou, China
| | - Ze Zhuang
- Department of Gastroenterology, The Second Clinical Medical College of Lanzhou University, LanZhou University Second Hospital, Lanzhou, China
| | - Hang Gong
- Department of Gastroenterology, The Second Clinical Medical College of Lanzhou University, LanZhou University Second Hospital, Lanzhou, China
| | - Dekui Zhang
- Department of Gastroenterology, The Second Clinical Medical College of Lanzhou University, LanZhou University Second Hospital, Lanzhou, China
- Key Laboratory of Digestive Diseases, LanZhou University Second Hospital, Lanzhou, China
| |
Collapse
|
6
|
Zhou C, Jiang M, Ye X, Liu X, Zhao W, Ma L, Zhou C. Antibacterial Activities of Peptide HF-18 Against Helicobacter pylori and its Virulence Protein CagA. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10372-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Luong HX, Ngan HD, Thi Phuong HB, Quoc TN, Tung TT. Multiple roles of ribosomal antimicrobial peptides in tackling global antimicrobial resistance. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211583. [PMID: 35116161 PMCID: PMC8790363 DOI: 10.1098/rsos.211583] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/20/2021] [Indexed: 05/03/2023]
Abstract
In the last century, conventional antibiotics have played a significant role in global healthcare. Antibiotics support the body in controlling bacterial infection and simultaneously increase the tendency of drug resistance. Consequently, there is a severe concern regarding the regression of the antibiotic era. Despite the use of antibiotics, host defence systems are vital in fighting infectious diseases. In fact, the expression of ribosomal antimicrobial peptides (AMPs) has been crucial in the evolution of innate host defences and has been irreplaceable to date. Therefore, this valuable source is considered to have great potential in tackling the antimicrobial resistance (AMR) crisis. Furthermore, the possibility of bacterial resistance to AMPs has been intensively investigated. Here, we summarize all aspects related to the multiple applications of ribosomal AMPs and their derivatives in combating AMR.
Collapse
Affiliation(s)
- Huy Xuan Luong
- Faculty of Pharmacy, PHENIKAA University, Hanoi 12116, Vietnam
- PHENIKAA Institute for Advanced Study (PIAS), PHENIKAA University, Hanoi 12116, Vietnam
| | | | | | - Thang Nguyen Quoc
- Nuclear Medicine Unit, Vinmec Healthcare System, Hanoi 10000, Vietnam
| | - Truong Thanh Tung
- Faculty of Pharmacy, PHENIKAA University, Hanoi 12116, Vietnam
- PHENIKAA Institute for Advanced Study (PIAS), PHENIKAA University, Hanoi 12116, Vietnam
| |
Collapse
|
8
|
MubarakAli D, Akshaya T, Sathya R, Irfan N. Study on the Interaction of Algal Peptides on Virulence Factors of Helicobacter pylori: In Silico Approach. Appl Biochem Biotechnol 2021; 194:37-53. [PMID: 34762267 PMCID: PMC8581125 DOI: 10.1007/s12010-021-03716-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/08/2021] [Indexed: 11/25/2022]
Abstract
In the Asian region, Helicobacter pylori infects about 80% populations, which is most leading cause of peptic ulcers, and it is an asymptomatic infection. Studies reported that the particular bacteria carry specific virulence factors that leads to severe complications. These virulence factors can be used as a drug targets to inhibit their growth and pathogenicity. Chronic infection with H. pylori virulence factors are CagA, VacA and HtrA positive strains the risk factor of gastric cancer. In this study, we aimed to study the antagonistic interaction pattern between the potential eight algal peptides against the virulence factors of H. pylori through in silico analysis intended to treat peptic ulcer and prevent the further complications such as cancer. The proteins of virulent factors are docked using C-Docker algorithm and calculated the bind energy of the complexes. The results showed that the peptide derived from a green alga, Tetradesmus sp. are active against the three virulent factors such as cag-A, vac-A, and Htr-A with multiple hydrogen, vdW, electrostatic interactions, and mild π-hydrophobic bindings with the libdock energy score for CagA, VacA and HtrA are 175.625, 158.603 and 89.397 kcal/mol. These primes and the peptide lead to develop a better and potential inhibitors against H. pylori infection.
Collapse
Affiliation(s)
- Davoodbasha MubarakAli
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu, India.
| | - Thirusangu Akshaya
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Raghunathan Sathya
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Navabshan Irfan
- Crescent School of Pharmacy, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu, India
| |
Collapse
|
9
|
Sousa C, Ferreira R, Azevedo NF, Oleastro M, Azeredo J, Figueiredo C, Melo LDR. Helicobacter pylori infection: from standard to alternative treatment strategies. Crit Rev Microbiol 2021; 48:376-396. [PMID: 34569892 DOI: 10.1080/1040841x.2021.1975643] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Helicobacter pylori is the major component of the gastric microbiome of infected individuals and one of the aetiological factors of chronic gastritis, peptic ulcer disease and gastric cancer. The increasing resistance to antibiotics worldwide has made the treatment of H. pylori infection a challenge. As a way to overhaul the efficacy of currently used H. pylori antibiotic-based eradication therapies, alternative treatment strategies are being devised. These include probiotics and prebiotics as adjuvants in H. pylori treatment, antimicrobial peptides as alternatives to antibiotics, photodynamic therapy ingestible devices, microparticles and nanoparticles applied as drug delivery systems, vaccines, natural products, and phage therapy. This review provides an updated synopsis of these emerging H. pylori control strategies and discusses the advantages, hurdles, and challenges associated with their development and implementation. An effective human vaccine would be a major achievement although, until now, projects regarding vaccine development have failed or were discontinued. Numerous natural products have demonstrated anti-H. pylori activity, mostly in vitro, but further clinical studies are needed to fully disclose their role in H. pylori eradication. Finally, phage therapy has the potential to emerge as a valid alternative, but major challenges remain, namely the isolation of more H. pylori strictly virulent bacterio(phages).
Collapse
Affiliation(s)
- Cláudia Sousa
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Rute Ferreira
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Nuno F Azevedo
- Faculty of Engineering, LEPABE - Department of Chemical Engineering, University of Porto, Porto, Portugal
| | - Mónica Oleastro
- Department of Infectious Diseases, National Institute of Health Dr Ricardo Jorge, Lisbon, Portugal
| | - Joana Azeredo
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Ceu Figueiredo
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.,Ipatimup - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Faculty of Medicine, Department of Pathology, University of Porto, Porto, Portugal
| | - Luís D R Melo
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
10
|
Isolation of dupA-positive and clarithromycin-resistant Helicobacter pylori from Iranian patients with duodenal ulcer. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
The Emergence of Multidrug-Resistant Helicobacter pylori in Southeast Asia: A Systematic Review on the Trends and Intervention Strategies Using Antimicrobial Peptides. Antibiotics (Basel) 2021; 10:antibiotics10091061. [PMID: 34572643 PMCID: PMC8465560 DOI: 10.3390/antibiotics10091061] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
The emergence of multidrug-resistant H. pylori poses a public healthcare threat, particularly in low- and middle-income countries. Recently, the World Health Organization has classified clarithromycin-resistant H. pylori as high priority in the research and discovery of novel antibiotics. This study was aimed to systematically review the prevalence of primary antibiotic resistance in H. pylori in Southeast Asian countries (SEAC) and to review current studies of antimicrobial peptides against H. pylori. We systematically searched through electronic databases of studies conducted on antimicrobial resistance of H. pylori in SEA countries. Furthermore, we searched articles that conducted studies on antimicrobial peptides, naturally occurring host’s defense molecules, against H. pylori. After a series of screening processes, 15 studies were included in our systematic review. Our analysis revealed that primary resistance of H. pylori to metronidazole, clarithromycin, and levofloxacin were high in SEAC, although the primary resistance to amoxicillin and tetracycline remains low. Multidrug-resistant H. pylori are emerging in SE Asian countries. The antimicrobial peptides show promising antibacterial and antibiofilm activity against drug-resistant H. pylori. The research and discovery of antimicrobial peptides against H. pylori in SEAC will help in limiting the spread of antimicrobial resistance of H. pylori.
Collapse
|
12
|
Roque-Borda CA, da Silva PB, Rodrigues MC, Azevedo RB, Di Filippo L, Duarte JL, Chorilli M, Festozo Vicente E, Pavan FR. Challenge in the Discovery of New Drugs: Antimicrobial Peptides against WHO-List of Critical and High-Priority Bacteria. Pharmaceutics 2021; 13:773. [PMID: 34064302 PMCID: PMC8224320 DOI: 10.3390/pharmaceutics13060773] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/15/2021] [Accepted: 05/16/2021] [Indexed: 12/15/2022] Open
Abstract
Bacterial resistance has intensified in recent years due to the uncontrolled use of conventional drugs, and new bacterial strains with multiple resistance have been reported. This problem may be solved by using antimicrobial peptides (AMPs), which fulfill their bactericidal activity without developing much bacterial resistance. The rapid interaction between AMPs and the bacterial cell membrane means that the bacteria cannot easily develop resistance mechanisms. In addition, various drugs for clinical use have lost their effect as a conventional treatment; however, the synergistic effect of AMPs with these drugs would help to reactivate and enhance antimicrobial activity. Their efficiency against multi-resistant and extensively resistant bacteria has positioned them as promising molecules to replace or improve conventional drugs. In this review, we examined the importance of antimicrobial peptides and their successful activity against critical and high-priority bacteria published in the WHO list.
Collapse
Affiliation(s)
- Cesar Augusto Roque-Borda
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil;
| | - Patricia Bento da Silva
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (P.B.d.S.); (M.C.R.); (R.B.A.)
| | - Mosar Corrêa Rodrigues
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (P.B.d.S.); (M.C.R.); (R.B.A.)
| | - Ricardo Bentes Azevedo
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (P.B.d.S.); (M.C.R.); (R.B.A.)
| | - Leonardo Di Filippo
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (L.D.F.); (J.L.D.); (M.C.)
| | - Jonatas L. Duarte
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (L.D.F.); (J.L.D.); (M.C.)
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (L.D.F.); (J.L.D.); (M.C.)
| | - Eduardo Festozo Vicente
- School of Sciences and Engineering, São Paulo State University (UNESP), Tupã 17602-496, Brazil;
| | - Fernando Rogério Pavan
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil;
| |
Collapse
|
13
|
Krzyżek P, Grande R. Transformation of Helicobacter pylori into Coccoid Forms as a Challenge for Research Determining Activity of Antimicrobial Substances. Pathogens 2020; 9:pathogens9030184. [PMID: 32143312 PMCID: PMC7157236 DOI: 10.3390/pathogens9030184] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
Morphological variability is one of the phenotypic features related to adaptation of microorganisms to stressful environmental conditions and increased tolerance to antimicrobial substances. Helicobacter pylori, a gastric mucosal pathogen, is characterized by a high heterogeneity and an ability to transform from a spiral to a coccoid form. The presence of the coccoid form is associated with the capacity to avoid immune system detection and to promote therapeutic failures. For this reason, it seems that the investigation for new, alternative methods combating H. pylori should include research of coccoid forms of this pathogen. The current review aimed at collecting information about the activity of antibacterial substances against H. pylori in the context of the morphological variability of this bacterium. The collected data was discussed in terms of the type of substances used, applied research techniques, and interpretation of results. The review was extended by a polemic on the limitations in determining the viability of coccoid H. pylori forms. Finally, recommendations which can help in future research aiming to find new compounds with a potential to eradicate H. pylori have been formulated.
Collapse
Affiliation(s)
- Paweł Krzyżek
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Correspondence:
| | - Rossella Grande
- Center for Aging Science and Translational Medicine (CeSI-MeT), Via Luigi Polacchi, 11, 66100 Chieti, Italy;
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| |
Collapse
|
14
|
Strategies to Combat Multidrug-Resistant and Persistent Infectious Diseases. Antibiotics (Basel) 2020; 9:antibiotics9020065. [PMID: 32041137 PMCID: PMC7168131 DOI: 10.3390/antibiotics9020065] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/16/2020] [Accepted: 02/01/2020] [Indexed: 12/21/2022] Open
Abstract
Antibiotic failure is one of the most worrying health problems worldwide. We are currently facing an international crisis with several problematic facets: new antibiotics are no longer being discovered, resistance mechanisms are occurring in almost all clinical isolates of bacteria, and recurrent infections caused by persistent bacteria are hampering the successful treatment of infections. In this context, new anti-infectious strategies against multidrug-resistant (MDR) and persistent bacteria, as well as the rescue of Food and Drug Administration (FDA)-approved compounds (drug repurposing), are being explored. Among the highlighted new anti-infectious strategies, in this review, we focus on antimicrobial peptides, anti-virulence compounds, phage therapy, and new molecules. As drugs that are being repurposed, we highlight anti-inflammatory compounds, anti-psychotics, anti-helminthics, anti-cancerous drugs, and statins.
Collapse
|