1
|
Han Z, Luo Z, Li X, Xiong D, Tian C. SNARE genes CcSec22 and CcSso1 coordinate fungal growth, sporulation, cell wall stress tolerance, endocytosis and full virulence in Cytospora chrysosperma. Sci Rep 2025; 15:5034. [PMID: 39934168 PMCID: PMC11814409 DOI: 10.1038/s41598-025-88584-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/29/2025] [Indexed: 02/13/2025] Open
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) facilitate intracellular vesicle trafficking and membrane fusion in eukaryotic organisms, significantly influencing fungal growth, development, and pathogenicity. Despite their importance, the specific functions of individual SNARE subunits remain largely unexplored. In Cytospora chrysosperma, a pathogen causing substantial damage to woody plants and leading to considerable ecological and economic impacts, 22 SNAREs have been identified. Yet, their functional roles have not been previously characterized. In this study, we focused on two SNARE-encoding genes, CcSec22 and CcSso1 that are supposed to mediate endoplasmic reticulum (ER)-Golgi and trans-Golgi Network (TGN)-secretory vesicle transport respectively. Notably, both genes demonstrate significantly elevated expression during the infection process. Targeted deletion of either of them resulted in retarded mycelial growth and remarkably decreased tolerance towards different cell-wall stressors. Interestingly, CcSec22 deletion mutants formed more hyphal branches while CcSso1 was required for morphological maintenance of conidiospores. More importantly, lack of either of them significantly reduced hyphal endocytosis and fungal virulence on host poplar. Collectively, our data highlighted that the SNARE genes CcSec22 and CcSso1 play pleiotropic roles in mycelial growth and development, stress responses, conidiation, endocytosis and in particular, they are required for the full virulence of C. chrysosperma. This study provides an insight into the role of SNARE proteins in C. chrysosperma pathogenesis.
Collapse
Affiliation(s)
- Zhu Han
- College of Forestry, Beijing Forestry University, Beijing, China
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Zheng Luo
- College of Forestry, Beijing Forestry University, Beijing, China
| | - Xueyan Li
- College of Forestry, Beijing Forestry University, Beijing, China
| | - Dianguang Xiong
- College of Forestry, Beijing Forestry University, Beijing, China.
| | - Chengming Tian
- College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
2
|
Li F, Zhang J, Zhong H, Yu K, Chen J. Genome-Wide Identification of SNARE Family Genes and Functional Characterization of an R-SNARE Gene BbSEC22 in a Fungal Insect Pathogen Beauveria bassiana. J Fungi (Basel) 2024; 10:393. [PMID: 38921379 PMCID: PMC11204939 DOI: 10.3390/jof10060393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are central components of the machinery mediating cell membrane fusion and intracellular vesicular trafficking in eukaryotic cells, and have been well-documented to play critical roles in growth, development, and pathogenesis in the filamentous fungal plant pathogens. However, little is known about the contributions of SNAREs to the physiology and biocontrol potential in entomopathogenic filamentous fungi. Here, a genome-wide analysis of SNARE genes was performed taking advantage of the available whole genome sequence of Beauveria bassiana, a classical entomopathogenic fungus. Based on the compared genomic method, 22 genes encoding putative SNAREs were identified from the whole genome of B. bassiana, and were classified into four groups (7 Qa-, 4 Qb-, 6 Qc-, and 5 R-SNAREs) according to the conserved structural features of their encoding proteins. An R-SNARE encoding gene BbSEC22 was further functionally characterized by gene disruption and complementation. The BbSEC22 null mutant showed a fluffy appearance in mycelial growth and an obvious lag in conidial germination. The null mutant also exhibited significantly increased sensitivity to oxidative stress and cell wall perturbing agents and reduced the yield of conidia production by 43.1% compared with the wild-type strain. Moreover, disruption of BbSEC22 caused a significant decrease in conidial virulence to Spodoptera litura larvae. Overall, our results provide an overview of vesicle trafficking in B. bassiana and revealed that BbSec22 was a multifunctional protein associated with mycelial growth, sporulation, conidial germination, stress tolerance, and insecticidal virulence.
Collapse
Affiliation(s)
| | - Juefeng Zhang
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (F.L.)
| | | | | | - Jianming Chen
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (F.L.)
| |
Collapse
|
3
|
Li C, Cong H, Cao X, Sun Y, Lu K, Li L, Wang Y, Zhang Y, Li Q, Jiang J, Li L. CfErp3 regulates growth, conidiation, inducing ipomeamarone and the pathogenicity of Ceratocystis fimbriata. Fungal Genet Biol 2024; 170:103846. [PMID: 38048937 DOI: 10.1016/j.fgb.2023.103846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/10/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
The Erp3 protein, which is an important member of the p24 family, is primarily responsible for the transport of cargo from the ER to the Golgi apparatus in Saccharomyces cerevisiae. However, the function of Erp3 in plant pathogenic fungi has not been reported. In this study, we characterized the ERP3 gene in Ceratocystis fimbriata, which causes the devastating disease sweetpotato black rot. The ΔCferp3 mutants exhibited slow growth, reduced conidia production, attenuated virulence, and reduced ability to induce host to produce toxins. Further analysis revealed that CfErp3 was localized in the ER and vesicles and regulated endocytosis, cell wall integrity, and osmotic stress responses, modulated ROS levels, and the production of ipomeamarone during pathogen-host interactions. These results indicate that CfErp3 regulates C. fimbriata growth and pathogenicity as well as the production of ipomeamarone in sweetpotato by controlling endocytosis, oxidative homeostasis, and responses to cell wall and osmotic stresses.
Collapse
Affiliation(s)
- Changgen Li
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China; Yancheng Biological Engineering Higher Vocational Technology School, Yancheng, Jiangsu Province 224051, China
| | - Hao Cong
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Xiaoying Cao
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Yong Sun
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Kailun Lu
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Ludan Li
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Yiming Wang
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Yongjing Zhang
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Qiang Li
- Chinese Academy of Agricultural Sciences Sweet Potato Research Institute, Xuzhou, Jiangsu Province 221131, China
| | - Jihong Jiang
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China.
| | - Lianwei Li
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China.
| |
Collapse
|
4
|
Adnan M, Islam W, Waheed A, Hussain Q, Shen L, Wang J, Liu G. SNARE Protein Snc1 Is Essential for Vesicle Trafficking, Membrane Fusion and Protein Secretion in Fungi. Cells 2023; 12:1547. [PMID: 37296667 PMCID: PMC10252874 DOI: 10.3390/cells12111547] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Fungi are an important group of microorganisms that play crucial roles in a variety of ecological and biotechnological processes. Fungi depend on intracellular protein trafficking, which involves moving proteins from their site of synthesis to the final destination within or outside the cell. The soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) proteins are vital components of vesicle trafficking and membrane fusion, ultimately leading to the release of cargos to the target destination. The v-SNARE (vesicle-associated SNARE) Snc1 is responsible for anterograde and retrograde vesicle trafficking between the plasma membrane (PM) and Golgi. It allows for the fusion of exocytic vesicles to the PM and the subsequent recycling of Golgi-localized proteins back to the Golgi via three distinct and parallel recycling pathways. This recycling process requires several components, including a phospholipid flippase (Drs2-Cdc50), an F-box protein (Rcy1), a sorting nexin (Snx4-Atg20), a retromer submit, and the COPI coat complex. Snc1 interacts with exocytic SNAREs (Sso1/2, Sec9) and the exocytic complex to complete the process of exocytosis. It also interacts with endocytic SNAREs (Tlg1 and Tlg2) during endocytic trafficking. Snc1 has been extensively investigated in fungi and has been found to play crucial roles in various aspects of intracellular protein trafficking. When Snc1 is overexpressed alone or in combination with some key secretory components, it results in enhanced protein production. This article will cover the role of Snc1 in the anterograde and retrograde trafficking of fungi and its interactions with other proteins for efficient cellular transportation.
Collapse
Affiliation(s)
- Muhammad Adnan
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (M.A.); (A.W.); (J.W.)
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Waqar Islam
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
| | - Abdul Waheed
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (M.A.); (A.W.); (J.W.)
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Quaid Hussain
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China;
| | - Ling Shen
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China;
| | - Juan Wang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (M.A.); (A.W.); (J.W.)
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Gang Liu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (M.A.); (A.W.); (J.W.)
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
5
|
Han S, Sheng B, Zhu D, Chen J, Cai H, Zhang S, Guo C. Role of FoERG3 in Ergosterol Biosynthesis by Fusarium oxysporum and the Associated Regulation by Bacillus subtilis HSY21. PLANT DISEASE 2023:PDIS05221010RE. [PMID: 36320138 DOI: 10.1094/pdis-05-22-1010-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Ergosterol is an important component of the fungal cell membrane and represents an effective target of chemical pesticides. However, the current understanding of ergosterol biosynthesis in the soybean root rot pathogen Fusarium oxysporum remains limited. In addition, the regular use of fungicides that inhibit ergosterol synthesis will seriously harm the ecological environment and human health. Bacillus subtilis is gradually replacing chemical control as a safe and effective biological agent; to investigate its effect on ergosterol synthesis of F. oxysporum, we verified the biological function of the FoERG3 gene of F. oxysporum by constructing knockout mutants. The results showed that knocking out FoERG3 blocked ergosterol biosynthesis, restricted mycelial growth, and increased the sensitivity to external stressors (NaCl, D-sorbitol, Congo Red, and H2O2). The increased permeability of the cell membrane promoted increased extracellular K+ levels and decreased mitochondrial cytochrome C contents. Treatment with suspension of B. subtilis HSY21 cells resulted in similar damage as observed when treating FoERG3-knockout F. oxysporum cells with ergosterol, which was characterised by deformity and swelling of the mycelium surface; increased membrane permeability; decreased pathogenicity to soybeans; and significantly decreased activities of cellulase, β-glucosidase, amylase, and pectin-methyl galactosylase. Notably, deleting FoERG3 resulted in a significant lag in the defense-response time of soybeans. Our results suggest that FoERG3 strongly influences the virulence of F. oxysporum and may be used as a potential antimicrobial target by B. subtilis HSY21 to inhibit ergosterol synthesis, which supports the use of B. subtilis as a biological control agent for protecting against F. oxysporum infection.
Collapse
Affiliation(s)
- Songyang Han
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150030, China
| | - Boxiang Sheng
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150030, China
| | - Dan Zhu
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150030, China
| | - Jiaxin Chen
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150030, China
| | - Hongsheng Cai
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150030, China
| | - Shuzhen Zhang
- Soybean Research Institute of Northeast Agricultural University, Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150030, China
| |
Collapse
|
6
|
SNARE Protein AoSec22 Orchestrates Mycelial Growth, Vacuole Assembly, Trap Formation, Stress Response, and Secondary Metabolism in Arthrobotrys oligospora. J Fungi (Basel) 2023; 9:jof9010075. [PMID: 36675896 PMCID: PMC9863257 DOI: 10.3390/jof9010075] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/31/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) facilitate intracellular vesicle trafficking and membrane fusion in eukaryotes and play a vital role in fungal growth, development, and pathogenicity. However, the functions of SNAREs are still largely unknown in nematode-trapping fungi. Arthrobotrys oligospora is a representative species of nematode-trapping fungi that can produce adhesive networks (traps) for nematode predation. In this study, we characterized AoSec22 in A. oligospora, a homolog of the yeast SNARE protein Sec22. Deletion of Aosec22 resulted in remarkable reductions in mycelial growth, the number of nuclei, conidia yield, and trap formation, especially for traps that failed to develop mature three-dimensional networks. Further, absence of Aosec22 impaired fatty acid utilization, autophagy, and stress tolerance; in addition, the vacuoles became small and fragmented in the hyphal cells of the ∆Aosec22 mutant, and large vacuoles failed to form. The reduced sporulation capacity correlated with the transcriptional repression of several sporulation-related genes, and the impaired accumulation of lipid droplets is in line with the transcriptional repression of several genes involved in fatty acid oxidation. Moreover, absence of Aosec22 remarkably impaired secondary metabolism, resulting in 4717 and 1230 compounds upregulated and downregulated in the ∆Aosec22 mutant, respectively. Collectively, our data highlighted that the SNARE protein AoSec22 plays a pleiotropic role in mycelial growth and development, vacuole assembly, lipid metabolism, stress response, and secondary metabolism; in particular, it is required for the proper development of traps in A. oligospora.
Collapse
|
7
|
Identification and Transcriptional Profiling of SNARE Family in Monascus ruber M7 Reveal Likely Roles in Secondary Metabolism. FERMENTATION 2022. [DOI: 10.3390/fermentation8120750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are the core components that mediate vesicle fusion, and they play an important role in secondary metabolism of filamentous fungi. However, in Monascus spp., one of the traditional medicinal and edible filamentous fungi, the members and function of SNAREs remain unknown. Here, twenty SNAREs in M. ruber M7 were systematically identified based on the gene structure, amino acid structure and phylogenetic analysis and were classified into four subfamilies. We also compared the expression profiles of twenty MrSNAREs in M. ruber M7 and its deletion mutants, ΔmrpigA and ΔpksCT, which could not produce Monascus pigment and citrinin, respectively. The results indicated that these MrSNAREs showed distinct expression patterns in the three strains. Compared to M. ruber M7, the expression levels of Mrtlg2, Mrbet1, Mrgos1 and Mrsec22 remained higher in ΔmrpigA but lower in ΔpksCT, which could be reason to consider them as potential candidate genes involved in secondary metabolism for further functional characterization. Further, the significant upregulation of Mrpep12 and Mrvtil in ΔpksCT is worthy of attention for further research. Our results provide systematic identification and expression profiling of the SNARE family in Monascus and imply that the functions of MrSNAREs are specific to different secondary metabolic processes.
Collapse
|
8
|
N-Methyltransferase CaASHH3 Acts as a Positive Regulator of Immunity against Bacterial Pathogens in Pepper. Int J Mol Sci 2022; 23:ijms23126492. [PMID: 35742935 PMCID: PMC9224371 DOI: 10.3390/ijms23126492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
Proteins with conserved SET domain play a critical role in plant immunity. However, the means of organization and functions of these proteins are unclear, particularly in non-model plants such as pepper (Capsicum annum L.). Herein, we functionally characterized CaASHH3, a member of class II (the ASH1 homologs H3K36) proteins in pepper immunity against Ralstonia solanacearum and Pseudomonas syringae pv tomato DC3000 (Pst DC3000). The CaASHH3 was localized in the nucleus, and its transcript levels were significantly enhanced by R. solanacearum inoculation (RSI) and exogenous application of salicylic acid (SA), methyl jasmonate (MeJA), ethephon (ETH), and abscisic acid (ABA). Knockdown of CaASHH3 by virus-induced gene silencing (VIGS) compromised peppers’ resistance to RSI. Furthermore, silencing of CaASHH3 impaired hypersensitive-response (HR)-like cell death response due to RSI and downregulated defense-associated marker genes, including CaPR1, CaNPR1, and CaABR1. The CaASHH3 protein was revealed to affect the promoters of CaNPR1, CaPR1, and CaHSP24. Transiently over-expression of CaASHH3 in pepper leaves elicited HR-like cell death and upregulated immunity-related marker genes. To further study the role of CaASHH3 in plant defense in vivo, CaASHH3 transgenic plants were generated in Arabidopsis. Overexpression of CaASHH3 in transgenic Arabidopsis thaliana enhanced innate immunity against Pst DC3000. Furthermore, CaASHH3 over-expressing transgenic A. thaliana plants exhibited upregulated transcriptional levels of immunity-associated marker genes, such as AtNPR1, AtPR1, and AtPR2. These results collectively confirm the role of CaASHH3 as a positive regulator of plant cell death and pepper immunity against bacterial pathogens, which is regulated by signaling synergistically mediated by SA, JA, ET, and ABA.
Collapse
|
9
|
Hussain A, Khan MI, Albaqami M, Mahpara S, Noorka IR, Ahmed MAA, Aljuaid BS, El-Shehawi AM, Liu Z, Farooq S, Zuan ATK. CaWRKY30 Positively Regulates Pepper Immunity by Targeting CaWRKY40 against Ralstonia solanacearum Inoculation through Modulating Defense-Related Genes. Int J Mol Sci 2021; 22:ijms222112091. [PMID: 34769521 PMCID: PMC8584995 DOI: 10.3390/ijms222112091] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 11/25/2022] Open
Abstract
The WRKY transcription factors (TFs) network is composed of WRKY TFs’ subset, which performs a critical role in immunity regulation of plants. However, functions of WRKY TFs’ network remain unclear, particularly in non-model plants such as pepper (Capsicum annuum L.). This study functionally characterized CaWRKY30—a member of group III Pepper WRKY protein—for immunity of pepper against Ralstonia solanacearum infection. The CaWRKY30 was detected in nucleus, and its transcriptional expression levels were significantly upregulated by R. solanacearum inoculation (RSI), and foliar application ethylene (ET), abscisic acid (ABA), and salicylic acid (SA). Virus induced gene silencing (VIGS) of CaWRKY30 amplified pepper’s vulnerability to RSI. Additionally, the silencing of CaWRKY30 by VIGS compromised HR-like cell death triggered by RSI and downregulated defense-associated marker genes, like CaPR1, CaNPR1, CaDEF1, CaABR1, CaHIR1, and CaWRKY40. Conversely, transient over-expression of CaWRKY30 in pepper leaves instigated HR-like cell death and upregulated defense-related maker genes. Furthermore, transient over-expression of CaWRKY30 upregulated transcriptional levels of CaWRKY6, CaWRKY22, CaWRKY27, and CaWRKY40. On the other hand, transient over-expression of CaWRKY6, CaWRKY22, CaWRKY27, and CaWRKY40 upregulated transcriptional expression levels of CaWRKY30. The results recommend that newly characterized CaWRKY30 positively regulates pepper’s immunity against Ralstonia attack, which is governed by synergistically mediated signaling by phytohormones like ET, ABA, and SA, and transcriptionally assimilating into WRKY TFs networks, consisting of CaWRKY6, CaWRKY22, CaWRKY27, and CaWRKY40. Collectively, our data will facilitate to explicate the underlying mechanism of crosstalk between pepper’s immunity and response to RSI.
Collapse
Affiliation(s)
- Ansar Hussain
- Department of Plant Breeding and Genetics, Ghazi University, Dera Ghazi Khan 32200, Pakistan; (A.H.); (M.I.K.); (S.M.); (I.R.N.)
| | - Muhammad Ifnan Khan
- Department of Plant Breeding and Genetics, Ghazi University, Dera Ghazi Khan 32200, Pakistan; (A.H.); (M.I.K.); (S.M.); (I.R.N.)
| | - Mohammed Albaqami
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Shahzadi Mahpara
- Department of Plant Breeding and Genetics, Ghazi University, Dera Ghazi Khan 32200, Pakistan; (A.H.); (M.I.K.); (S.M.); (I.R.N.)
| | - Ijaz Rasool Noorka
- Department of Plant Breeding and Genetics, Ghazi University, Dera Ghazi Khan 32200, Pakistan; (A.H.); (M.I.K.); (S.M.); (I.R.N.)
| | - Mohamed A. A. Ahmed
- Plant Production Department (Horticulture—Medicinal and Aromatic Plants), Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt;
| | - Bandar S. Aljuaid
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (B.S.A.); (A.M.E.-S.)
| | - Ahmed M. El-Shehawi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (B.S.A.); (A.M.E.-S.)
| | - Zhiqin Liu
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou 350001, China
- Correspondence: (Z.L.); (A.T.K.Z.)
| | - Shahid Farooq
- Department of Plant Protection, Faculty of Agriculture, Harran University, Şanlıurfa 63050, Turkey;
| | - Ali Tan Kee Zuan
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence: (Z.L.); (A.T.K.Z.)
| |
Collapse
|
10
|
Hussain A, Noman A, Arif M, Farooq S, Khan MI, Cheng P, Qari SH, Anwar M, Hashem M, Ashraf MF, Alamri S, Adnan M, Khalofah A, Al-Zoubi OM, Ansari MJ, Khan KA, Sun Y. A basic helix-loop-helix transcription factor CabHLH113 positively regulate pepper immunity against Ralstonia solanacearum. Microb Pathog 2021; 156:104909. [PMID: 33964418 DOI: 10.1016/j.micpath.2021.104909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/26/2021] [Accepted: 04/15/2021] [Indexed: 11/26/2022]
Abstract
Pepper's (Capsicum annum) response to bacterial pathogen Ralstonia solanacearm inoculation (RSI) and abiotic stresses is known to be synchronized by transcriptional network; however, related molecular mechanisms need extensive experimentation. We identified and characterized functions of CabHLH113 -a basic helix-loop-helix transcription factor-in pepper immunity to R. solanacearum infection. The RSI and foliar spray of phytohormones, including salicylic acid (SA), methyl jasmonate (MeJA), ethylene (ETH), and absicic acid (ABA) induced transcription of CabHLH113 in pepper. Loss of function of CabHLH113 by virus-induced-gene-silencing (VIGS) compromised defense of pepper plants against RSI and suppressed relative expression levels of immunity-associated marker genes, i.e., CaPR1, CaNPR1, CaDEF1, CaHIR1 and CaABR1. Pathogen growth was significantly increased after loss of function of CabHLH113 compared with un-silenced plants with remarkable increase in pepper susceptibility. Besides, transiently over-expression of CabHLH113 induced HR-like cell death, H2O2 accumulation and up-regulation of defense-associated marker genes, e.g. CaPR1, CaNPR1, CaDEF1, CaHIR1 and CaABR1. Additionally, transient over-expression of CabHLH113 enhanced the transcriptional levels of CaWRKY6, CaWRKY27 and CaWRKY40. Conversely, transient over-expression of CaWRKY6, CaWRKY27 and CaWRKY40 enhanced the transcriptional levels of CabHLH113. Collectively, our results indicate that newly characterized CabHLH113 has novel defense functions in pepper immunity against RSI via triggering HR-like cell death and cellular levels of defense linked genes.
Collapse
Affiliation(s)
- Ansar Hussain
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China; Department of Plant Breeding and Genetics, Ghazi University, Dera Ghazi Khan, Pakistan.
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad, Pakistan.
| | - Muhammad Arif
- Department of Plant Protection, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Shahid Farooq
- Department of Agronomy, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Muhammad Ifnan Khan
- Department of Plant Breeding and Genetics, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Ping Cheng
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China; College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
| | - Sameer H Qari
- Biology Department, Aljumum University College, Umm Al - Qura University, Makkah, Saudi Arabia
| | - Muhammad Anwar
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Mohamed Hashem
- King Khalid University, College of Science, Department of Biology, Abha, 61413, Saudi Arabia; Assiut University, Faculty of Science, Botany and Microbiology Department, Assiut, 71516, Egypt
| | - Muhammad Furqan Ashraf
- College of Life Sciences, South China Agricultural University, No.483 Wushan Road, Tianhe District, Guangzhou, 510642, China
| | - Saad Alamri
- King Khalid University, College of Science, Department of Biology, Abha, 61413, Saudi Arabia
| | - Muhammad Adnan
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Ahlam Khalofah
- King Khalid University, College of Science, Department of Biology, Abha, 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | | | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (MJP Rohilkhand University Bareilly), 244001, India
| | - Khalid Ali Khan
- King Khalid University, College of Science, Department of Biology, Abha, 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Yunhao Sun
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China; College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China.
| |
Collapse
|
11
|
The Golgin Protein RUD3 Regulates Fusarium graminearum Growth and Virulence. Appl Environ Microbiol 2021; 87:AEM.02522-20. [PMID: 33452023 DOI: 10.1128/aem.02522-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
Golgins are coiled-coil proteins that play prominent roles in maintaining the structure and function of the Golgi complex. However, the role of golgin proteins in phytopathogenic fungi remains poorly understood. In this study, we functionally characterized the Fusarium graminearum golgin protein RUD3, a homolog of ScRUD3/GMAP-210 in Saccharomyces cerevisiae and mammalian cells. Cellular localization observation revealed that RUD3 is located in the cis-Golgi. Deletion of RUD3 caused defects in vegetative growth, ascospore discharge, deoxynivalenol (DON) production, and virulence. Moreover, the Δrud3 mutant showed reduced expression of tri genes and impairment of the formation of toxisomes, both of which play essential roles in DON biosynthesis. We further used green fluorescent protein (GFP)-tagged SNARE protein SEC22 (SEC22-GFP) as a tool to study the transport between the endoplasmic reticulum (ER) and Golgi and observed that SEC22-GFP was retained in the cis-Golgi in the Δrud3 mutant. RUD3 contains the coiled coil (CC), GRAB-associated 2 (GA2), GRIP-related Arf binding (GRAB), and GRAB-associated 1 (GA1) domains, which except for GA1, are indispensable for normal localization and function of RUD3, whereas only CC is essential for normal RUD3-RUD3 interaction. Together, these results demonstrate how the golgin protein RUD3 mediates retrograde trafficking in the ER-to-Golgi pathway and is necessary for growth, ascospore discharge, DON biosynthesis, and pathogenicity in F. graminearum IMPORTANCE Fusarium head blight (FHB) caused by the fungal pathogen Fusarium graminearum is an economically important disease of wheat and other small grain cereal crops worldwide, and limited effective control strategies are available. A better understanding of the regulation mechanisms of F. graminearum development, deoxynivalenol (DON) biosynthesis, and pathogenicity is therefore important for the development of effective control management of this disease. Golgins are attached via their extreme carboxy terminus to the Golgi membrane and are involved in vesicle trafficking and organelle maintenance in eukaryotic cells. In this study, we systematically characterized a highly conserved Golgin protein, RUD3, and found that it is required for vegetative growth, ascospore discharge, DON production, and pathogenicity in F. graminearum Our findings provide a comprehensive characterization of the golgin family protein RUD3 in plant-pathogenic fungus, which could help to identify a new potential target for effective control of this devastating disease.
Collapse
|