1
|
Yan S, Liu X, Li C, Jiang Z, Li D, Zhu L. Genomic virulence genes profile analysis of Salmonella enterica isolates from animal and human in China from 2004 to 2019. Microb Pathog 2022; 173:105808. [PMID: 36183957 DOI: 10.1016/j.micpath.2022.105808] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/07/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022]
Abstract
Salmonella is a momentously zoonotic and food-borne pathogen that seriously threats human and animal health around the world. Salmonella pathogenicity is closely related to its virulence genes profile. However, conventional virulence gene analysis methods cannot truly reveal whole virulence genes carried by Salmonella. In this study, whole genome sequencing in combination with Virulence Factor Database were applied to investigate whole virulence gene profiles of 243 Salmonella isolates from animals and humans in China from 2004 to 2019. The results showed that a total of 670 virulence genes were identified in Salmonella, among them, 319 virulence genes were found in all the Salmonella tested isolates, and 9 virulence genes were unique to Salmonella. The 670 virulence genes were classified into 14 categories according to their functions, and the genes related to adherence, effector delivery system, immune modulation, motility and nutritional/metabolic factors accounted for 84.63%. Relationships between virulence genes and serovars, sequence types indicated that strains belonged to the same serovar or sequence type had similar virulence genes profiles, however, isolates from different sources, years and locations of isolation had variable virulence gene profiles. In addition, copy number of virulence genes and homologous virulence genes shared with other pathogens were also analyzed in this study. In summary, we investigated pan-genomic virulence gene profiles and molecular epidemiology of Salmonella isolates from humans and animals in China from 2004 to 2019. These findings are beneficial for pathogenic monitoring, investigation of virulence evolution as well as prevention and control of Salmonella.
Collapse
Affiliation(s)
- Shigan Yan
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 25053, China
| | - Xu Liu
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 25053, China
| | - Chengyu Li
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 25053, China
| | - Zhaoxu Jiang
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 25053, China
| | - Donghui Li
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 25053, China
| | - Liping Zhu
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 25053, China.
| |
Collapse
|
2
|
Ahmad HI, Iqbal A, Ijaz N, Ullah MI, Asif AR, Rahman A, Mehmood T, Haider G, Ahmed S, Mahmoud SF, Alghamdi FO, Al Amari HA, Simirgiotis MJ, Chen J. Molecular Evolution of the Activating Transcription Factors Shapes the Adaptive Cellular Responses to Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2153996. [PMID: 35873797 PMCID: PMC9300285 DOI: 10.1155/2022/2153996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022]
Abstract
Reactive oxygen species (ROS) play an essential part in physiology of individual cell. ROS can cause damage to various biomolecules, including DNA. The systems that have developed to harness the impacts of ROS are antique evolutionary adaptations that are intricately linked to almost every aspect of cellular function. This research reveals the idea that during evolution, rather than being largely conserved, the molecular pathways reacting to oxidative stress have intrinsic flexibility. The coding sequences of the ATF2, ATF3, ATF4, and ATF6 genes were aligned to examine selection pressure on the genes, which were shown to be very highly conserved among vertebrate species. A total of 33 branches were explicitly evaluated for their capacity to diversify selection. After accounting for multiple testing, significance was determined using the likelihood ratio test with a threshold of p ≤ 0.05. Positive selection signs in these genes were detected across vertebrate lineages. In the selected test branches of our phylogeny, the synonymous rate variation revealed evidence (LRT, p value = 0.011 ≤ 0.05) of gene-wide episodic diversifying selection. As a result, there is evidence that diversifying selection occurred at least once on at least one test branch. These findings indicate that the activities of ROS-responsive systems are also theoretically flexible and may be altered by environmental selection pressure. By determining where the genes encoding these processes are "targeted" during evolution, we may better understand the mechanism of adaptation to oxidative stress during evolution.
Collapse
Affiliation(s)
- Hafiz Ishfaq Ahmad
- Department of Animal Breeding and Genetics, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Asia Iqbal
- Department of Wild Life and Ecology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Nabeel Ijaz
- Department of Clinical Science, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Irfan Ullah
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Akhtar Rasool Asif
- Department of Animal Sciences, University of Veterinary and Animal Sciences, Jhang, Pakistan
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan, China
| | - Abdur Rahman
- Department of Animal Sciences, University of Veterinary and Animal Sciences, Jhang, Pakistan
- Department of Animal Nutrition, Afyon Kocatepe University, Turkey
| | - Tahir Mehmood
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore 53700, Punjab, Pakistan
| | - Ghulam Haider
- Department of Biological Sciences, University of Veterinary and Animal Sciences, Ravi Campus, Pattoki, Pakistan
| | - Shakeel Ahmed
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, 5090000 Valdivia, Chile
| | - Samy F. Mahmoud
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Fatimah Othman Alghamdi
- National Center for Biotechnology King Abdulaziz City for Science and Technology Riyadh, Saudi Arabia
| | - Hala Abdulrahman Al Amari
- National Center for Biotechnology King Abdulaziz City for Science and Technology Riyadh, Saudi Arabia
| | - Mario Juan Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, 5090000 Valdivia, Chile
| | - Jinping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong, Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Ahmad HI, Afzal G, Sadia S, Haider G, Ahmed S, Saeed S, Chen J. Structural and Evolutionary Adaptations of Nei-Like DNA Glycosylases Proteins Involved in Base Excision Repair of Oxidative DNA Damage in Vertebrates. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1144387. [PMID: 35419164 PMCID: PMC9001079 DOI: 10.1155/2022/1144387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/03/2022] [Indexed: 12/25/2022]
Abstract
Oxidative stress is a type of stress that damages DNA and can occur from both endogenous and exogenous sources. Damage to DNA caused by oxidative stress can result in base modifications that promote replication errors and the formation of sites of base loss, which pose unique challenges to the preservation of genomic integrity. However, the adaptive evolution of the DNA repair mechanism is poorly understood in vertebrates. This research aimed to explore the evolutionary relationships, physicochemical characteristics, and comparative genomic analysis of the Nei-like glycosylase gene family involved in DNA base repair in the vertebrates. The genomic sequences of NEIL1, NEIL2, and NEIL3 genes were aligned to observe selection constraints in the genes, which were relatively low conserved across vertebrate species. The positive selection signals were identified in these genes across the vertebrate lineages. We identified that only about 2.7% of codons in these genes were subjected to positive selection. We also revealed that positive selection pressure was increased in the Fapy-DNA-glyco and H2TH domain, which are involved in the base excision repair of DNA that has been damaged by oxidative stress. Gene structure, motif, and conserved domain analysis indicated that the Nei-like glycosylase genes in mammals and avians are evolutionarily low conserved compared to other glycosylase genes in other "vertebrates" species. This study revealed that adaptive selection played a critical role in the evolution of Nei-like glycosylase in vertebrate species. Systematic comparative genome analyses will give key insights to elucidate the links between DNA repair and the development of lifespan in various organisms as more diverse vertebrate genome sequences become accessible.
Collapse
Affiliation(s)
- Hafiz Ishfaq Ahmad
- Department of Animal Breeding and Genetics, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Gulnaz Afzal
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Sehrish Sadia
- Department of Biological Sciences, University of Veterinary and Animal Sciences, Ravi Campus, Pattoki, Pakistan
| | - Ghulam Haider
- Department of Biological Sciences, University of Veterinary and Animal Sciences, Ravi Campus, Pattoki, Pakistan
| | - Shakeel Ahmed
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, 5090000 Valdivia, Chile
| | - Saba Saeed
- Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Jinping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Response of lymphatic tissues to natural feed additives, curcumin (Curcuma longa) and black cumin seeds (Nigella sativa), in broilers against Pasteurella multocida. Poult Sci 2021; 100:101005. [PMID: 33765487 PMCID: PMC7994784 DOI: 10.1016/j.psj.2021.01.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/26/2020] [Accepted: 01/02/2021] [Indexed: 02/06/2023] Open
Abstract
The antibiotic residues and pathogenic resistance against the drug are very common in poultry because of antibiotics used in their feed. It is necessary to use natural feed additives as effective alternatives instead of a synthetic antibiotic. This study aimed to investigate the immune response of Nigella sativa and Curcuma longa in broilers under biological stress against Pasteurella multocida. The total 100, one-day-old chicks were divided into 5 groups. Groups 1 and 2 served as control negative and control positive. Both control groups were receiving simple diet without any natural feed additives, but the infection was given in group 2 at day 28 with the dose of 5.14 × 107 CFU by IV. Groups 3A and 3B were offered 2% seed powder of Nigella sativa, groups 4A and 4B were offered C. longa 1% in powdered form, and group 5A and 5B were offered both C. longa 1% and N. sativa 2% in the feed from day 1 and groups 3B, 4B, and 5B were challenged with P. multocida. The haemagglutination inhibition titter against Newcastle Disease virus (NDV), feed conversion ratio, mortality, gross, and histopathology were studied. The results of this study revealed that hemagglutination inhibition titers against NDV were highly significant (P < 0.05) in treated groups, highest titers (3A, 6.8; 3B, 6.4; and 5A, 7.2) were obtained from treated Groups. The feed conversion ratio of N. sativa + C. longa treated groups (5A, 1.57, and 3A, 1.76) were higher than that of other nontreated groups. The gross and histopathological changes were much severe in control positive, but fewer changes were seen in treated groups. Therefore, we recommend that natural feed additives, black cumin (N. sativa) and turmeric (C. longa), act as an immune enhancer in broilers against P. multocida.
Collapse
|