1
|
Kaul H, Naz S, Ahmad HI, Saleem N, Shakil M, Firasat S, Majeed B, Sharif S, Rashid F, Etezaz A, Khan MU. Molecular Characterization of Oculocutaneous Albinism in Consanguineous Pakistani Families: Unraveling Disease-Causing Pathogenic Variants in OCA2 and TYR Genes for Precision Diagnosis. Biochem Genet 2025:10.1007/s10528-025-11113-3. [PMID: 40343539 DOI: 10.1007/s10528-025-11113-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 04/20/2025] [Indexed: 05/11/2025]
Abstract
Oculocutaneous albinism is a rare genetic disorder characterized by the absence or reduction of melanin pigment in the skin, hair, and eyes, leading to various visual and dermatological challenges. To shed light on the molecular pathology of OCA in consanguineous Pakistani families, we conducted whole-exome sequencing on affected individuals from two families. We identified disease-causing homozygous mutations in the TYR (NM_000372) and OCA2 (NM_000275.3) genes that segregated within their respective pedigrees. In family AL01, we identified a novel mutation in the TYR gene, resulting in a missense change, c.1280T>C, leading to p.V427A. In family AL02, we detected a splice site variant, c.1045-15T>G in OCA2 gene. Protein model of the V427A mutation within the tyrosinase protein predicted that as the mutant amino acid was considerably smaller in size than the wild type, it might have created a potential gap in protein's core structure. The V427A mutation is positioned centrally within the Lumenal melanosome repeat domain raises concerns about potential structural alterations in this domain due to disparities between the wild-type and mutant residue, potentially leading to a loss of function in this repeated region. Our study provides a deeper understanding of the molecular basis of OCA in consanguineous Pakistani families by identifying disease-causing mutations in the TYR and OCA2 genes. The novel TYR mutation, V427A, offers insights on the structural consequences of this mutation, which could have implications for understanding the pathology of OCA and potentially effecting future diagnostic and therapeutic approaches for individuals affected by this rare genetic disorder.
Collapse
Affiliation(s)
- Haiba Kaul
- Genetics Discipline, Department of Animal Breeding and Genetics, University of Veterinary and Animal Sciences, Ravi Campus, Pattoki, Pakistan.
| | - Shagufta Naz
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Hafiz Ishfaq Ahmad
- Department of Animal Breeding and Genetics, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Nameerah Saleem
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Muhammad Shakil
- Department of Biochemistry, King Edward Medical University (KEMU), Lahore, Pakistan
| | - Sabika Firasat
- Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Bilal Majeed
- Genetics Discipline, Department of Animal Breeding and Genetics, University of Veterinary and Animal Sciences, Ravi Campus, Pattoki, Pakistan
| | - Saima Sharif
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Farzana Rashid
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Abdullah Etezaz
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Umer Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| |
Collapse
|
2
|
Structural and Phylogenetic Analysis of CXCR4 Protein Reveals New Insights into Its Role in Emerging and Re-Emerging Diseases in Mammals. Vaccines (Basel) 2023; 11:vaccines11030671. [PMID: 36992255 DOI: 10.3390/vaccines11030671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Chemokine receptor type 4 (CXCR4) is a G protein-coupled receptor that plays an essential role in immune system function and disease processes. Our study aims to conduct a comparative structural and phylogenetic analysis of the CXCR4 protein to gain insights into its role in emerging and re-emerging diseases that impact the health of mammals. In this study, we analyzed the evolution of CXCR4 genes across a wide range of mammalian species. The phylogenetic study showed species-specific evolutionary patterns. Our analysis revealed novel insights into the evolutionary history of CXCR4, including genetic changes that may have led to functional differences in the protein. This study revealed that the structural homologous human proteins and mammalian CXCR4 shared many characteristics. We also examined the three-dimensional structure of CXCR4 and its interactions with other molecules in the cell. Our findings provide new insights into the genomic landscape of CXCR4 in the context of emerging and re-emerging diseases, which could inform the development of more effective treatments or prevention strategies. Overall, our study sheds light on the vital role of CXCR4 in mammalian health and disease, highlighting its potential as a therapeutic target for various diseases impacting human and animal health. These findings provided insight into the study of human immunological disorders by indicating that Chemokines may have activities identical to or similar to those in humans and several mammalian species.
Collapse
|
3
|
Ghazi BK, Bangash MH, Razzaq AA, Kiyani M, Girmay S, Chaudhary WR, Zahid U, Hussain U, Mujahid H, Parvaiz U, Buzdar IA, Nawaz S, Elsadek MF. In Silico Structural and Functional Analyses of NLRP3 Inflammasomes to Provide Insights for Treating Neurodegenerative Diseases. BIOMED RESEARCH INTERNATIONAL 2023; 2023:9819005. [PMID: 36726838 PMCID: PMC9886462 DOI: 10.1155/2023/9819005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/08/2022] [Accepted: 11/24/2022] [Indexed: 01/24/2023]
Abstract
Inflammasomes are cytoplasmic intracellular multiprotein complexes that control the innate immune system's activation of inflammation in response to derived chemicals. Recent advancements increased our molecular knowledge of activation of NLRP3 inflammasomes. Although several studies have been done to investigate the role of inflammasomes in innate immunity and other diseases, structural, functional, and evolutionary investigations are needed to further understand the clinical consequences of NLRP3 gene. The purpose of this study is to investigate the structural and functional impact of the NLRP3 protein by using a computational analysis to uncover putative protein sites involved in the stabilization of the protein-ligand complexes with inhibitors. This will allow for a deeper understanding of the molecular mechanism underlying these interactions. It was found that human NLRP3 gene coexpresses with PYCARD, NLRC4, CASP1, MAVS, and CTSB based on observed coexpression of homologs in other species. The NACHT, LRR, and PYD domain-containing protein 3 is a key player in innate immunity and inflammation as the sensor subunit of the NLRP3 inflammasome. The inflammasome polymeric complex, consisting of NLRP3, PYCARD, and CASP1, is formed in response to pathogens and other damage-associated signals (and possibly CASP4 and CASP5). Comprehensive structural and functional analyses of NLRP3 inflammasome components offer a fresh approach to the development of new treatments for a wide variety of human disorders.
Collapse
Affiliation(s)
| | | | | | | | - Shishay Girmay
- Department of Animal Science, College of Dryland Agriculture, Samara University, Ethiopia
| | | | - Usman Zahid
- Acute & Specialty Medicine Hospital Epsom & St. Helier University Hospitals NHS Trust Medical College, Faisalabad Medical University, Pakistan
| | | | - Huma Mujahid
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Usama Parvaiz
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | | | - Shah Nawaz
- Department of Anatomy, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Mohamed Farouk Elsadek
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| |
Collapse
|
4
|
A Simulation Analysis and Screening of Deleterious Nonsynonymous Single Nucleotide Polymorphisms (nsSNPs) in Sheep LEP Gene. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7736485. [PMID: 35978633 PMCID: PMC9377880 DOI: 10.1155/2022/7736485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022]
Abstract
Leptin is a polypeptide hormone produced in the adipose tissue and governs many processes in the body. Recently, polymorphisms in the LEP gene revealed a significant change in body weight regulation, energy balance, food intake, and reproductive hormone secretion. This study considers its crucial role in the regulation of the economically important traits of sheep. Several computational tools, including SIFT, Predict SNP2, SNAP2, and PROVEAN, have been used to screen out the deleterious nsSNPs. Following the screening of 11 nsSNPs in the sheep genome, 5 nsSNPs, T86M (C → T), D98N (G → A), N136T (A → C), R142Q (G → A), and P157Q (C → A), were predicted to have a significant deleterious effect on the LEP protein function, leading to phenotypic difference. The analysis of proteins’ stability change due to amino acid substitution using the I-stable, SDM, and DynaMut consistently confirmed that three nsSNPs (T86M (C → T), D98N (G → A), and P157Q (C → A)) increased protein stability. It is suggested that these three nsSNPs may enhance the evolvability of LEP protein, which is vital for the evolutionary adaptation of sheep. Our findings demonstrate that the five nsSNPs reported in this study might be responsible for sheep’s structural and functional modifications of LEP protein. This is the first comprehensive report on the sheep LEP gene. It narrow downs the candidate nsSNPs for in vitro experiments to facilitate the development of reliable molecular markers for associated traits.
Collapse
|
5
|
Ahmad HI, Ijaz N, Afzal G, Asif AR, ur Rehman A, Rahman A, Ahmed I, Yousaf M, Elokil A, Muhammad SA, Albogami SM, Alotaibi SS. Computational Insights into the Structural and Functional Impacts of nsSNPs of Bone Morphogenetic Proteins. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4013729. [PMID: 35832847 PMCID: PMC9273450 DOI: 10.1155/2022/4013729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/15/2022] [Indexed: 12/12/2022]
Abstract
BMPs (bone morphogenetic proteins) are multipurpose (transforming growth factor)TGF-superfamily released cytokines. These glycoproteins, acting as disulfide-linked homo- or heterodimers, are highly potent regulators of bone and cartilage production and repair, cell proliferation throughout embryonic development, and bone homeostasis in the adults. Due to the fact that genetic variation might influence structural functions, this study is aimed to determine the pathogenic effect of nonsynonymous single-nucleotide polymorphisms (nsSNPs) in BMP genes. The implications of these variations, investigated using computational analysis and molecular models of the mature TGF-β domain, revealed the impact of modifications on the function of BMP protein. The three-dimensional (3D) structure analysis was performed on the nsSNP Y316S, V386G, E387G, C389G, and C391G nsSNP in the TGF-β domain of chicken BMP2 and H344P, S347P, V357A nsSNP in the TGF-β domain of chicken BMP4 protein that was anticipated to be harmful and of high risk. The ability of the proteins to perform variety of tasks interact with other molecules depends on their tertiary structural composition. The current analysis revealed the four most damaging variants (Y316S, V386G, E387G, C389G, and C391G), highly conserved and functional and are located in the TGF-beta domain of BMP2 and BMP4. The amino acid substitutions E387G, C389G, and C391G are discovered in the binding region. It was observed that the mutations in the TGF-beta domain caused significant changes in its structural organization including the substrate binding sites. Current findings will assist future research focused on the role of these variants in BMP function loss and their role in skeletal disorders, and this will possibly help to develop practical strategies for treating bone-related conditions.
Collapse
Affiliation(s)
- Hafiz Ishfaq Ahmad
- Department of Animal Breeding and Genetics, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Nabeel Ijaz
- Department of Clinical Science, Faculty of Veterinary Sciences, Bahauddin Zakariya University Multan, Pakistan
| | - Gulnaz Afzal
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Akhtar Rasool Asif
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan, China
- University of Veterinary and Animal Sciences, Lahore, Sub-Campus Jhang, Pakistan
| | - Aziz ur Rehman
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan, China
- University of Veterinary and Animal Sciences, Lahore, Sub-Campus Jhang, Pakistan
| | - Abdur Rahman
- University of Veterinary and Animal Sciences, Lahore, Sub-Campus Jhang, Pakistan
- Department of Animal Nutrition, Afyon Kocatepe University, Turkey
| | - Irfan Ahmed
- Department of Animal Nutrition, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Pakistan
| | - Muhammad Yousaf
- Department of Animal Nutrition, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Pakistan
| | - Abdelmotaleb Elokil
- Department of Animal Production, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| | - Sayyed Aun Muhammad
- University of Veterinary and Animal Sciences, Lahore, Sub-Campus Jhang, Pakistan
| | - Sarah M. Albogami
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Saqer S. Alotaibi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
6
|
Ahmad HI, Afzal G, Sadia S, Haider G, Ahmed S, Saeed S, Chen J. Structural and Evolutionary Adaptations of Nei-Like DNA Glycosylases Proteins Involved in Base Excision Repair of Oxidative DNA Damage in Vertebrates. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1144387. [PMID: 35419164 PMCID: PMC9001079 DOI: 10.1155/2022/1144387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/03/2022] [Indexed: 12/25/2022]
Abstract
Oxidative stress is a type of stress that damages DNA and can occur from both endogenous and exogenous sources. Damage to DNA caused by oxidative stress can result in base modifications that promote replication errors and the formation of sites of base loss, which pose unique challenges to the preservation of genomic integrity. However, the adaptive evolution of the DNA repair mechanism is poorly understood in vertebrates. This research aimed to explore the evolutionary relationships, physicochemical characteristics, and comparative genomic analysis of the Nei-like glycosylase gene family involved in DNA base repair in the vertebrates. The genomic sequences of NEIL1, NEIL2, and NEIL3 genes were aligned to observe selection constraints in the genes, which were relatively low conserved across vertebrate species. The positive selection signals were identified in these genes across the vertebrate lineages. We identified that only about 2.7% of codons in these genes were subjected to positive selection. We also revealed that positive selection pressure was increased in the Fapy-DNA-glyco and H2TH domain, which are involved in the base excision repair of DNA that has been damaged by oxidative stress. Gene structure, motif, and conserved domain analysis indicated that the Nei-like glycosylase genes in mammals and avians are evolutionarily low conserved compared to other glycosylase genes in other "vertebrates" species. This study revealed that adaptive selection played a critical role in the evolution of Nei-like glycosylase in vertebrate species. Systematic comparative genome analyses will give key insights to elucidate the links between DNA repair and the development of lifespan in various organisms as more diverse vertebrate genome sequences become accessible.
Collapse
Affiliation(s)
- Hafiz Ishfaq Ahmad
- Department of Animal Breeding and Genetics, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Gulnaz Afzal
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Sehrish Sadia
- Department of Biological Sciences, University of Veterinary and Animal Sciences, Ravi Campus, Pattoki, Pakistan
| | - Ghulam Haider
- Department of Biological Sciences, University of Veterinary and Animal Sciences, Ravi Campus, Pattoki, Pakistan
| | - Shakeel Ahmed
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, 5090000 Valdivia, Chile
| | - Saba Saeed
- Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Jinping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Genomic and Computational Analysis of Novel SNPs in TNP1 Gene Promoter Region of Bos indicus Breeding Bulls. Genet Res (Camb) 2022; 2022:9452234. [PMID: 35356752 PMCID: PMC8941572 DOI: 10.1155/2022/9452234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 12/03/2021] [Accepted: 02/16/2022] [Indexed: 11/29/2022] Open
Abstract
Transition nuclear proteins (TNPs), the principal proteins identified in the condensing spermatids chromatin, have been found to play a key role in histone displacement and chromatin condensation during mammalian spermatogenesis. One such gene belonging to the TNP family called TNP1 gene is abundantly expressed in the regulation of spermatogenesis, and its sequence is remarkably well conserved among mammals. Genomic analysis, by sequencing and computational approach, was used to identify the novel polymorphisms and to evaluate the molecular regulation of TNP1 gene expression in Sahiwal cattle breeding bulls. DNA samples were sequenced to identify novel single nucleotide polymorphisms (SNPs) in the TNP1 gene. Modern computational tools were used to predict putative transcription factor binding in the TNP1 promoter and CpG islands in the TNP1 promoter region. In the TNP1 gene, four SNPs, three TATA boxes, and one CAAT box were identified. One CAAT box was discovered at 89 bp upstream of start site ATG. The computational analyses indicated that the polymorphisms inside the promoter sequence results in an added HNF-1 transcription factor binding site. In contrast, the other variations may remove the naturally occurring SRF transcription factor binding site. The CpG islands in the TNP1 promoter region were predicted to be absent by the MethPrimer program before and after SNP site mutations. These findings pave the way for more research into the TNP1 gene's promoter activity and the links between these SNPs and reproductive attributes in the Sahiwal breeding bulls.
Collapse
|
8
|
Ahmad MZ, Ahmad HI, Gul A, Shah Z, Ahmad B, Ahmed S, Al-Ghamdi AA, S. Elshikh M, Jamil A, Nasir JA, Dvořáčková H, Dvořáček J. Genome-wide analysis of sucrose synthase family in soybean and their expression in response to abiotic stress and seed development. PLoS One 2022; 17:e0264269. [PMID: 35213642 PMCID: PMC8880960 DOI: 10.1371/journal.pone.0264269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/07/2022] [Indexed: 01/18/2023] Open
Abstract
The sucrose synthase (SS) is an important enzyme family which play a vital role in sugar metabolism to improve the fruit quality of the plants. In many plant species, the members of SS family have been investigated but the detailed information is not available in legumes particularly and Glycine max specifically. In the present study, we found thirteen SS members (GmSS1-GmSS13) in G. max genome. High conserved regions were present in the GmSS sequences that may due to the selection pressure during evolutionary events. The segmental duplication was the major factor to increase the number of GmSS family members. The identified thirteen GmSS genes were divided into Class I, Class II and Class III with variable numbers of genes in each class. The protein interaction of GmSS gave the co-expression of sucrose synthase with glucose-1-phosphate adenylyltransferase while SLAC and REL test found number of positive sites in the coding sequences of SS family members. All the GmSS family members except GmSS7 and few of class III members, were highly expressed in all the soybean tissues. The expression of the class I members decreased during seed development, whireas, the class II members expression increased during the seed developing, may involve in sugar metabolism during seed development. Solexa sequencing libraries of acidic condition (pH 4.2) stress samples showed that the expression of class I GmSS genes increased 1- to 2-folds in treated samples than control. The differential expression pattern was observed between the members of a paralogous. This study provides detailed genome-wide analysis of GmSS family in soybean that will provide new insights for future evolutionary and soybean breeding to improve the plant growth and development.
Collapse
Affiliation(s)
| | - Hafiz Ishfaq Ahmad
- Department of Animal Breeding and Genetics, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Asma Gul
- Department of Statistics, Shaheed Benazir Bhutto Women University, Peshawar, Pakistan
| | - Zamarud Shah
- Department of Biotechnology, University of Science and Technology, Bannu, Pakistan
| | - Bushra Ahmad
- Department of Biochemistry, Shaheed Benazir Bhutto Women University, Peshawar, Pakistan
| | - Shakeel Ahmed
- Institute de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile
| | - Abdullah Ahmed Al-Ghamdi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed S. Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Arshad Jamil
- Department of Plant Breeding and Genetics, University of Agriculture, D.I. Khan, Pakistan
| | - Jamal Abdul Nasir
- Department of Plant Breeding and Genetics, Gomal University, D.I. Khan, Pakistan
| | - Helena Dvořáčková
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | | |
Collapse
|
9
|
Ahmad HI, Afzal G, Iqbal MN, Iqbal MA, Shokrollahi B, Mansoor MK, Chen J. Positive Selection Drives the Adaptive Evolution of Mitochondrial Antiviral Signaling (MAVS) Proteins-Mediating Innate Immunity in Mammals. Front Vet Sci 2022; 8:814765. [PMID: 35174241 PMCID: PMC8841730 DOI: 10.3389/fvets.2021.814765] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/24/2021] [Indexed: 12/17/2022] Open
Abstract
The regulated production of filamentous protein complexes is essential in many biological processes and provides a new paradigm in signal transmission. The mitochondrial antiviral signaling protein (MAVS) is a critical signaling hub in innate immunity that is activated when a receptor induces a shift in the globular caspase activation and recruitment domain of MAVS into helical superstructures (filaments). It is of interest whether adaptive evolution affects the proteins involved in innate immunity. Here, we explore and confer the role of selection and diversification on mitochondrial antiviral signaling protein in mammalian species. We obtined the MAVS proteins of mammalian species and examined their differences in evolutionary patterns. We discovered evidence for these proteins being subjected to substantial positive selection. We demonstrate that immune system proteins, particularly those encoding recognition proteins, develop under positive selection using codon-based probability methods. Positively chosen regions within recognition proteins cluster in domains involved in microorganism recognition, implying that molecular interactions between hosts and pathogens may promote adaptive evolution in the mammalian immune systems. These significant variations in MAVS development in mammalian species highlights the involvement of MAVS in innate immunity. Our findings highlight the significance of accounting for how non-synonymous alterations affect structure and function when employing sequence-level studies to determine and quantify positive selection.
Collapse
Affiliation(s)
- Hafiz Ishfaq Ahmad
- Department of Animal Breeding and Genetics, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Gulnaz Afzal
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | | | - Borhan Shokrollahi
- Department of Animal Science, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Muhammad Khalid Mansoor
- Department of Microbiology, Faculty of Veterinary and Animal Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Jinping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
- *Correspondence: Jinping Chen
| |
Collapse
|
10
|
In Silico Structural, Functional, and Phylogenetic Analysis of Cytochrome (CYPD) Protein Family. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5574789. [PMID: 34046497 PMCID: PMC8128545 DOI: 10.1155/2021/5574789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/23/2021] [Indexed: 02/08/2023]
Abstract
Cytochrome (CYP) enzymes catalyze the metabolic reactions of endogenous and exogenous compounds. The superfamily of enzymes is found across many organisms, regardless of type, except for plants. Information was gathered about CYP2D enzymes through protein sequences of humans and other organisms. The secondary structure was predicted using the SOPMA. The structural and functional study of human CYP2D was conducted using ProtParam, SOPMA, Predotar 1.03, SignalP, TMHMM 2.0, and ExPASy. Most animals shared five central motifs according to motif analysis results. The tertiary structure of human CYP2D, as well as other animal species, was predicted by Phyre2. Human CYP2D proteins are heavily conserved across organisms, according to the findings. This indicates that they are descended from a single ancestor. They calculate the ratio of alpha-helices to extended strands to beta sheets to random coils. Most of the enzymes are alpha-helix, but small amounts of the random coil were also found. The data were obtained to provide us with a better understanding of mammalian proteins' functions and evolutionary relationships.
Collapse
|
11
|
Zhu X, Zhang F, Lian S, Wang Y, Hu N, Chen X, Dai X, Hu X, Wang S, Bao Z. IAPs Gene Expansion in the Scallop Patinopecten yessoensis and Their Expression Profiles After Exposure to the Toxic Dinoflagellate. Front Physiol 2021; 12:633301. [PMID: 33613325 PMCID: PMC7893105 DOI: 10.3389/fphys.2021.633301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/15/2021] [Indexed: 01/17/2023] Open
Abstract
Inhibitors of apoptosis proteins (IAPs) are conserved regulators involved in cell cycle, cell migration, cell death, immunity and inflammation, should be due to the fact that they can assist with the ability to cope with different kinds of extrinsic or intrinsic stresses. Bivalve molluscs are well adapted to highly complex marine environments. As free-living filter feeders that may take toxic dinoflagellates as food, bivalves can accumulate and put up with significant levels of paralytic shellfish toxins (PSTs). PSTs absorption and accumulation could have a deleterious effect on bivalves, causing negative impact on their feeding and digestion capabilities. In the present study, we analyzed IAP genes (PyIAPs) in Yesso scallop (Patinopecten yessoensis), a major fishery and aquaculture species in China. Forty-seven PyIAPs from five sub-families were identified, and almost half of the PyIAP genes were localized in clusters on two chromosomes. Several sites under positive selection was revealed in the significantly expanded sub-families BIRC4 and BIRC5. After exposure to PST-producing dinoflagellates, Alexandrium catenella, fourteen PyIAPs showed significant responses in hepatopancreas and kidney, and more than eighty-five percent of them were from the expanded sub-families BIRC4 and BIRC5. The regulation pattern of PyIAPs was similar between the two tissues, with more than half exhibited expression suppression within three days after exposure. In contrast to hepatopancreas, more acute changes of PyIAPs expression could be detected in kidney, suggesting the possible involvement of these PyIAPs in tissue-specific PST tolerance. These findings also imply the adaptive expansion of bivalve IAP genes in response to algae derived biotoxins.
Collapse
Affiliation(s)
- Xiaomei Zhu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Fengmei Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Shanshan Lian
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yinghui Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Naina Hu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Xiaomei Chen
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Xiaoting Dai
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Xiaoli Hu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
12
|
Comparative analysis of the mitochondrial proteins reveals complex structural and functional relationships in Fasciola species. Microb Pathog 2021; 152:104754. [PMID: 33508415 DOI: 10.1016/j.micpath.2021.104754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/31/2020] [Accepted: 01/17/2021] [Indexed: 12/21/2022]
Abstract
Mitochondria is a cellular source of energy, appears to play an essential role in dealing with cellular stress induced by environmental stimuli. The genetic diversity of mitochondrial genes involved in oxidative phosphorylation affecting the production of cellular energy and regional adaptation to various ecological (climatic) pressures affecting amino acid sequences (variants of protein). However, little is known about the combined effect of protein changes on cell-level metabolic alterations in simultaneous exposure to various environmental conditions, including mitochondrial dysfunction and oxidative stress induction. The present study was designed to address this issue by analyzing the mitochondrial proteins in Fasciola species including Cytochrome oxidase (COX1, COX2, COX3, and CYTB) and NADH dehydrogenase (ND1, ND2, ND3, ND4, ND5, and ND6). Mitochondrial proteins were used for detailed computational investigation, using available standard bioinformatics tools to exploit structural and functional relationships. These proteins in Fasciola hepatica, Fasciola gigentica, and Fasciola jacksoni were functionally annotated using public databases. The results showed that the protein of COX1 of F. hepatica, F. gigantica, and F. jacksoni consist of 510, 513, and 517 amino acids, respectively. The alignment of proteins showed that these proteins are conserved in the same regions at ten positions in COX and CYTB proteins while at twelve locations in NADH. Three-dimensional structure of COX, CYTB, and NADH proteins were compared and showed differences in additional conserved and binding sites in COX and CYTB proteins as compared to NADH in three species of Fasciola. These results based on the amino acid diversity pattern were used to identify sites in the enzyme and the variations in mitochondrial proteins among Fasciola species. Our study provides valuable information for future experimental studies, including identification of therapeutic, diagnostic, and immunoprophylactic interests with novel mitochondrial proteins.
Collapse
|