1
|
Xie R, Fan D, Cheng X, Yin Y, Li H, Wegner SV, Chen F, Zeng W. Living therapeutics: Precision diagnosis and therapy with engineered bacteria. Biomaterials 2025; 321:123342. [PMID: 40252271 DOI: 10.1016/j.biomaterials.2025.123342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 04/02/2025] [Accepted: 04/12/2025] [Indexed: 04/21/2025]
Abstract
Bacteria-based therapy has emerged as a promising strategy for cancer treatment, offering the potential for targeted tumor delivery, immune activation, and modulation of the tumor microenvironment. However, the unpredictable behavior, safety concerns, and limited efficacy of wild-type bacteria pose significant challenges to their clinical translation. Recent advancements in synthetic biology and chemical engineering have enabled the development of precisely engineered bacterial platforms with enhanced controllability, targeted delivery, and reduced toxicity. This review summarize the current progress of engineered bacteria in cancer therapy. We first introduce the theoretical underpinnings and key advantages of bacterial therapies in cancer. Subsequently, we delve into the applications of genetic engineering and chemical modification techniques to enhance their therapeutic potential. Finally, we address critical challenges and future prospects, with a focus on improving safety and efficacy. This review aims to stimulate further research and provide valuable insights into the development of engineered bacterial therapies for precision oncology.
Collapse
Affiliation(s)
- Ruyan Xie
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410078, China
| | - Duoyang Fan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410078, China
| | - Xiang Cheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410078, China
| | - Ying Yin
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410078, China
| | - Haohan Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410078, China
| | - Seraphine V Wegner
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, 48149, Germany
| | - Fei Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410078, China.
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410078, China.
| |
Collapse
|
2
|
Ji Q, Ma J, Wang S, Liu Q. Systematic identification of a panel of strong promoter regions from Listeria monocytogenes for fine-tuning gene expression. Microb Cell Fact 2021; 20:132. [PMID: 34247599 PMCID: PMC8273982 DOI: 10.1186/s12934-021-01628-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/05/2021] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Attenuated Listeria monocytogenes (Lm) has been widely used as a vaccine vector in the prevention and treatment of pathogen infection and tumor diseases. In addition, previous studies have proved that the attenuated Lm can protect zebrafish from Vibrio infections, indicating that the attenuated Lm has a good application prospect in the field of aquatic vaccines. However, the limitation mainly lies in the lack of a set of well-characterized natural promoters for the expression of target antigens in attenuated Lm. RESULTS In our study, candidate strong promoters were identified through RNA-seq analysis, and characterized in Lm through enhanced green fluorescent protein (EGFP). Nine native promoters that showed stronger activities than that of the known strong promoter P36 under two tested temperatures (28 and 37 °C) were selected from the set, and P29 with the highest activity was 24-fold greater than P36. Furthermore, we demonstrated that P29 could initiate EGFP expression in ZF4 cells and zebrafish embryos. CONCLUSIONS This well-characterized promoter library can be used to fine-tune the expression of different proteins in Lm. The availability of a well-characterized promoter toolbox of Lm is essential for the analysis of yield increase for biotechnology applications.
Collapse
Affiliation(s)
- Qianyu Ji
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Junfei Ma
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Shuying Wang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Qing Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China.
| |
Collapse
|