1
|
Kamdi B, Barate A, Kulurkar P, Kaore M, Bhandarkar A, Singh R, Kurkure N. Pathology and molecular characterization of chicken infectious anemia virus and in silico antigen prediction. Anim Biotechnol 2023; 34:5160-5167. [PMID: 36919599 DOI: 10.1080/10495398.2023.2186889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The present study investigated five poultry flocks (size 142-600 birds) suspected of chicken infectious anemia (CIA) from Maharashtra, India. The necropsy of dead birds revealed severe atrophy of the thymus, gelatinization of bone marrow, subcutaneous hemorrhages, growth impairment, and severe anemia. Specific PCR targeting, 1390 bp fragment of the CIAV, VP1 gene was used in this study. Sequence analysis revealed that CIAV sequences of this study were grouped in genotype A. At the nucleotide level identity of 99.6% or more was seen between field sequences. At the amino acid level identity of 100% was seen between field sequences and NGP-1. Also, VP1 protein sequences of this study showed high identity with TJBD40, GD-K-12 strains from China and AB046590 strain from Japan. Further, the protein sequences of field CIAV had 0.7% to 2.5% divergence from VP1 sequences of vaccine strains. Antigenic epitopes of VP1 protein were predicted by SVMTriPtool and the field CIAV presented substitutions in two epitopes. To conclude, present study confirms the circulation of genotype A of CIAV in Maharashtra, India and predicted VP1 proteins of field CIAV revealed changes in two epitopes compared to vaccine strains.
Collapse
Affiliation(s)
- Bhupesh Kamdi
- Department of Veterinary Pathology, MAFSU, Nagpur, India
| | - Abhijit Barate
- Department of Veterinary Biochemistry, MAFSU, Nagpur, India
| | | | - Megha Kaore
- Department of Veterinary Pathology, MAFSU, Nagpur, India
| | | | - Rahul Singh
- Animal/Experimental Pathology, CCRAS, Kolkata, India
| | - Nitin Kurkure
- Department of Veterinary Pathology, MAFSU, Nagpur, India
| |
Collapse
|
2
|
Liu H, Wang S, Yang S, Luo SX, Jie J, Hua S, Peng L, Luo J, Song L, Li D. Characteristics of the Severe Acute Respiratory Syndrome Coronavirus 2 Omicron BA.2 Subvariant in Jilin, China from March to May 2022. J Transl Int Med 2022; 10:349-358. [PMID: 36860638 PMCID: PMC9969560 DOI: 10.2478/jtim-2022-0054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background and Objectives In the midst of the pandemic, new coronavirus mutants continue to emerge; the most relevant variant worldwide is omicron. Here, patients who recovered from the disease living in Jilin Province were analyzed to identify factors affecting the severity of omicron infection and to provide insights into its spread and early indication. Methods In this study, 311 cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were divided into two groups. Data on the patients' demographic characteristics and laboratory tests, including platelet count (PLT), neutrophil count (NE), C-reactive protein (CRP), serum creatinine (SCR), and neutrophil-to-lymphocyte ratio (NLR), were collected. The biomarkers for moderate and severe coronavirus disease 2019 (COVID-19) and factors affecting the incubation period and time to subsequent negative nucleic acid amplification test (NAAT) were also investigated. Results Age, gender, vaccination, hypertension, stroke, chronic obstructive pulmonary disease (COPD)/chronic bronchitis/asthma, and some laboratory tests were statistically different between the two groups. In the receiver operating characteristic (ROC) analysis, PLT and CRP had higher area under the ROC curve values. In the multivariate analysis, age, hypertension, COPD/chronic bronchitis/asthma, and CRP were correlated with moderate and severe COVID-19. Moreover, age was correlated with longer incubation. In the Kaplan-Meier curve analysis, gender (male), CRP, and NLR were associated with longer time to subsequent negative NAAT. Conclusions Older patients with hypertension and lung diseases were likely to have moderate or severe COVID-19, and younger patients might have a shorter incubation. A male patient with high CRP and NLR levels might take more time to turn back negative in the NAAT.
Collapse
Affiliation(s)
- Han Liu
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun130000, Jilin Province, China
| | - Shuai Wang
- Department of Vascular Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun130000, Jilin Province, China
| | - Siqi Yang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun130000, Jilin Province, China
| | - Sean X. Luo
- Department of Vascular Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun130000, Jilin Province, China
| | - Jing Jie
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun130000, Jilin Province, China
| | - Shucheng Hua
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun130000, Jilin Province, China
| | - Liping Peng
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun130000, Jilin Province, China
| | - Jingjing Luo
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun130000, Jilin Province, China
| | - Lei Song
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun130000, Jilin Province, China
| | - Dan Li
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun130000, Jilin Province, China
| |
Collapse
|
3
|
Oluwagbemi OO, Oladipo EK, Dairo EO, Ayeni AE, Irewolede BA, Jimah EM, Oyewole MP, Olawale BM, Adegoke HM, Ogunleye AJ. Computational construction of a glycoprotein multi-epitope subunit vaccine candidate for old and new South-African SARS-CoV-2 virus strains. INFORMATICS IN MEDICINE UNLOCKED 2022; 28:100845. [PMID: 35071728 PMCID: PMC8760845 DOI: 10.1016/j.imu.2022.100845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/28/2021] [Accepted: 01/01/2022] [Indexed: 12/19/2022] Open
Abstract
The discovery of a new SARS-CoV-2 virus strain in South Africa presents a major public health threat, therefore contributing to increased infections and transmission rates during the second wave of the global pandemic. This study lays the groundwork for the development of a novel subunit vaccine candidate from the circulating strains of South African SARS-CoV-2 and provides an understanding of the molecular epidemiological trend of the circulating strains. A total of 475 whole-genome nucleotide sequences from South Africa submitted between December 1, 2020 and February 15, 2021 available at the GISAID database were retrieved based on its size, coverage level and hosts. To obtain the distribution of the clades and lineages of South African SARS-CoV-2 circulating strains, the metadata of the sequence retrieved were subjected to an epidemiological analysis. There was a prediction of the cytotoxic T lymphocytes (CTL), Helper T cells (HTL) and B-cell epitopes. Furthermore, there was allergenicity, antigenicity and toxicity predictions on the epitopes. The analysis of the physicochemical properties of the vaccine construct was performed; the secondary structure, tertiary structure and B-cell 3D conformational structure of the vaccine construct were predicted. Also, molecular binding simulations and dynamics simulations were adopted in the prediction of the vaccine construct's stability and binding affinity with TLRs. Result obtained from the metadata analysis indicated lineage B.1.351 to be in higher circulation among various circulating strains of SARS-CoV-2 in South Africa and GH has the highest number of circulating clades. The construct of the novel vaccine was antigenic, non-allergenic and non-toxic. The Instability index (II) score and aliphatic index were estimated as 41.74 and 78.72 respectively. The computed half-life in mammalian reticulocytes was 4.4 h in vitro, for yeast and in E. coli was >20 h and >10 h in vivo respectively. The grand average of hydropathicity (GRAVY) score is estimated to be -0.129, signifying the hydrophilic nature of the protein. The molecular docking indicates that the vaccine construct has a high binding affinity towards the TLRs with TLR 3 having the highest binding energy (-1203.2 kcal/mol) and TLR 9 with the lowest (-1559.5 kcal/mol). These results show that the vaccine construct is promising and should be evaluated using animal model.
Collapse
Affiliation(s)
- Olugbenga Oluseun Oluwagbemi
- Department of Computer Science and Information Technology, Sol Plaatje University, 8301, Kimberley, South Africa
- Department of Mathematical Sciences, Stellenbosch University, 7602, Matieland, South Africa
- National Institute of Theoretical and Computational Sciences (NiTheCS), South Africa
| | - Elijah Kolawole Oladipo
- Department of Microbiology, Laboratory of Molecular Biology, Immunology and Bioinformatics, Adeleke University, Ede, Osun State, Nigeria
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
| | - Emmanuel Oluwatobi Dairo
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
| | - Ayodele Eugene Ayeni
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
- Department of Medical Microbiology and Parasitology, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo State, Nigeria
| | | | - Esther Moradeyo Jimah
- Department of Medical Microbiology and Parasitology, University of Ilorin, Kwara State, Nigeria
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
| | - Moyosoluwa Precious Oyewole
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
| | - Boluwatife Mary Olawale
- Reproduction and Bioinformatics Unit, Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
| | | | - Adewale Joseph Ogunleye
- Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Moscow Oblast, Russian Federation
| |
Collapse
|
4
|
SARS-CoV-2 reinfection with a virus harboring mutation in the Spike and the Nucleocapsid proteins in Panama. Int J Infect Dis 2021; 108:588-591. [PMID: 34107326 PMCID: PMC8180085 DOI: 10.1016/j.ijid.2021.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 01/10/2023] Open
Abstract
We report a case of reinfection by SARS-CoV-2 with the second virus harboring amino acid changes in the Spike protein (141-143del, D215A, ins215AGY, L452R, D614G), orf1a, helicase, orf3a, and Nucleocapside. The virus associated with the reinfection, from an endemic lineage containing the S:L452R immune escape mutation, was circulating in Panama at the time.
Collapse
|
5
|
Hwang W, Lei W, Katritsis NM, MacMahon M, Chapman K, Han N. Current and prospective computational approaches and challenges for developing COVID-19 vaccines. Adv Drug Deliv Rev 2021; 172:249-274. [PMID: 33561453 PMCID: PMC7871111 DOI: 10.1016/j.addr.2021.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/23/2022]
Abstract
SARS-CoV-2, which causes COVID-19, was first identified in humans in late 2019 and is a coronavirus which is zoonotic in origin. As it spread around the world there has been an unprecedented effort in developing effective vaccines. Computational methods can be used to speed up the long and costly process of vaccine development. Antigen selection, epitope prediction, and toxicity and allergenicity prediction are areas in which computational tools have already been applied as part of reverse vaccinology for SARS-CoV-2 vaccine development. However, there is potential for computational methods to assist further. We review approaches which have been used and highlight additional bioinformatic approaches and PK modelling as in silico methods which may be useful for SARS-CoV-2 vaccine design but remain currently unexplored. As more novel viruses with pandemic potential are expected to arise in future, these techniques are not limited to application to SARS-CoV-2 but also useful to rapidly respond to novel emerging viruses.
Collapse
Affiliation(s)
- Woochang Hwang
- Milner Therapeutics Institute, University of Cambridge, Cambridge, UK
| | - Winnie Lei
- Milner Therapeutics Institute, University of Cambridge, Cambridge, UK; Department of Surgery, University of Cambridge, Cambridge, UK
| | - Nicholas M Katritsis
- Milner Therapeutics Institute, University of Cambridge, Cambridge, UK; Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Méabh MacMahon
- Milner Therapeutics Institute, University of Cambridge, Cambridge, UK; Centre for Therapeutics Discovery, LifeArc, Stevenage, UK
| | - Kathryn Chapman
- Milner Therapeutics Institute, University of Cambridge, Cambridge, UK
| | - Namshik Han
- Milner Therapeutics Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
6
|
Touhidinia M, Sefid F, Bidakhavidi M. Design of a Multi-epitope Vaccine Against Acinetobacter baumannii Using Immunoinformatics Approach. Int J Pept Res Ther 2021; 27:2417-2437. [PMID: 34483787 PMCID: PMC8397861 DOI: 10.1007/s10989-021-10262-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2021] [Indexed: 02/07/2023]
Abstract
Acinetobacter baumannii is one of the most successful pathogens causing nosocomial infections and has significantly multidrug-resistant. So far, there are no certain treatments to protect against infection with A. baumannii, therefore an effective A. baumannii vaccine needed. The purpose of this study was to predict antigenic epitopes of CarO protein for designing the A. baumannii vaccine using immunoinformatics analysis. CarO protein is one of the most important factors in the resistance against the antibiotic Carbapenem. In this study, T and B-cell epitopes of CarO protein were predicted and screened based on the antigenicity, toxicity, allergenicity features. The epitopes were linked by suitable linkers. Four different adjuvants were attached to the vaccine constructs which among them, vaccine construct 3 was chosen to predict the secondary and the 3D structure of the vaccine. The refinement process was performed to improve the quality of the 3D model structure; the validation process is performed using the Ramachandran plot and ProSA z-score. The designed vaccine's binding affinity to six various HLA molecules and TLR 2 and TLR4 were evaluated by molecular docking. Finally, in silico gene cloning was performed in the pET28a (+) vector. The findings suggest that the vaccine may be a promising vaccine to prevent A. baumannii infection.
Collapse
Affiliation(s)
- Maryam Touhidinia
- Department of Biology, Faculty of Science, Yazd University, Yazd, Iran
| | - Fatemeh Sefid
- Department of Medical Genetics, Shahid Sadoughi University of Medical Science, Yazd, Iran
- Department of Biology, Science and Art University, Yazd, Iran
| | - Mozhgan Bidakhavidi
- Department of Biology, Faculty of Science, Yazd University, Yazd, Iran
- Department of Nursing, Nursing and Midwifery Research, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| |
Collapse
|