1
|
Warias P, Plewa P, Poniewierska-Baran A. Resveratrol, Piceatannol, Curcumin, and Quercetin as Therapeutic Targets in Gastric Cancer-Mechanisms and Clinical Implications for Natural Products. Molecules 2024; 30:3. [PMID: 39795061 PMCID: PMC11721033 DOI: 10.3390/molecules30010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/14/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
Gastric cancer remains a significant global health challenge, driving the need for innovative therapeutic approaches. Natural polyphenolic compounds such as resveratrol, piceatannol, curcumin, and quercetin currently show promising results in the prevention and treatment of various cancers, due to their diverse biological activities. This review presents the effects of natural compounds on important processes related to cancer, such as apoptosis, proliferation, migration, invasion, angiogenesis, and autophagy. Resveratrol, naturally found in red grapes, has been shown to induce apoptosis and inhibit the proliferation, migration, and invasion of gastric cancer cells. Piceatannol, a metabolite of resveratrol, shares similar anticancer properties, particularly in modulating autophagy. Curcumin, derived from turmeric, is known for its anti-inflammatory and antioxidant properties, and its ability to inhibit tumor growth and metastasis. Quercetin, a flavonoid found in various fruits and vegetables, induces cell cycle arrest and apoptosis while enhancing the efficacy of conventional therapies. Despite their potential, challenges such as low bioavailability limit their clinical application, necessitating further research into novel delivery systems. Collectively, these compounds represent a promising avenue for enhancing gastric cancer treatment and improving patient outcomes through their multifaceted biological effects.
Collapse
Affiliation(s)
- Paulina Warias
- Doctoral School, University of Szczecin, Mickiewicza 18, 70-384 Szczecin, Poland;
| | - Paulina Plewa
- Department of Physiology, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Agata Poniewierska-Baran
- Department of Physiology, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland;
- Institute of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland
| |
Collapse
|
2
|
Ben Dassi R, Ibidhi S, Jemai H, Cherif A, Driouich Chaouachi R. Resveratrol: Challenges and prospects in extraction and hybridization with nanoparticles, polymers, and bio-ceramics. Phytother Res 2024; 38:5309-5322. [PMID: 39228146 DOI: 10.1002/ptr.8319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 09/05/2024]
Abstract
Resveratrol (RSV), a bioactive natural phenolic compound found in plants, fruits, and vegetables, has garnered significant attention in pharmaceutical, food, and cosmetic industries due to its remarkable biological and pharmacological activities. Despite its potential in treating various diseases, its poor pharmacokinetic properties, such as low solubility, stability, bioavailability, and susceptibility to rapid oxidation, limit its biomedical applications. Recent advancements focus on incorporating resveratrol into innovative materials like nanoparticles, polymers, and bio-ceramics to enhance its properties and bioavailability. In this review, an exhaustive literature search was conducted from PubMed, Google Scholar, Science Direct, Scopus, and Web of Science databases to explore these advancements, to compares conventional and innovative extraction methods, and to highlights resveratrol's therapeutic potential, including its anti-inflammatory, anti-oxidative, anti-cancerogenic, antidiabetic, neuroprotective, and cardio-protective properties. Additionally, we discuss the challenges and prospects of hybrid materials combining resveratrol with nanoparticles, polymers, and bio-ceramics for therapeutic applications. Rigorous studies are still needed to confirm their clinical efficacy.
Collapse
Affiliation(s)
- Roua Ben Dassi
- Laboratory BVBGR-LR11ES31, Institute of Biotechnology of Sidi Thabet, University of Manouba, Tunisia
- Doctoral School in Sciences and Technologies of Computing, Communications, Design and the Environment, University of Manouba, Tunisia
| | - Salah Ibidhi
- Laboratory BVBGR-LR11ES31, Institute of Biotechnology of Sidi Thabet, University of Manouba, Tunisia
- Doctoral School in Sciences and Technologies of Computing, Communications, Design and the Environment, University of Manouba, Tunisia
| | - Hedya Jemai
- Laboratory BVBGR-LR11ES31, Institute of Biotechnology of Sidi Thabet, University of Manouba, Tunisia
| | - Ameur Cherif
- Laboratory BVBGR-LR11ES31, Institute of Biotechnology of Sidi Thabet, University of Manouba, Tunisia
| | - Rim Driouich Chaouachi
- Laboratory BVBGR-LR11ES31, Institute of Biotechnology of Sidi Thabet, University of Manouba, Tunisia
| |
Collapse
|
3
|
Wang Y, Li S, Wang T, Zou M, Peng X. Extracellular Vesicles From Mycoplasma gallisepticum: Modulators of Macrophage Activation and Virulence. J Infect Dis 2024; 229:1523-1534. [PMID: 37929888 DOI: 10.1093/infdis/jiad486] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/21/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023] Open
Abstract
Extracellular vesicles (EVs) mediate intercellular communication by transporting proteins. To investigate the pathogenesis of Mycoplasma gallisepticum, a major threat to the poultry industry, we isolated and characterized M. gallisepticum-produced EVs. Our study highlights the significant impact of M. gallisepticum-derived EVs on immune function and macrophage apoptosis, setting them apart from other M. gallisepticum metabolites. These EVs dose-dependently enhance M. gallisepticum adhesion and proliferation, simultaneously modulating Toll-like receptor 2 and interferon γ pathways and thereby inhibiting macrophage activation. A comprehensive protein analysis revealed 117 proteins in M. gallisepticum-derived EVs, including established virulence factors, such as GapA, CrmA, VlhA, and CrmB. Crucially, these EV-associated proteins significantly contribute to M. gallisepticum infection. Our findings advance our comprehension of M. gallisepticum pathogenesis, offering insights for preventive strategies and emphasizing the pivotal role of M. gallisepticum-derived EVs and their associated proteins. This research sheds light on the composition and crucial role of M. gallisepticum-derived EVs in M. gallisepticum pathogenesis, aiding our fight against M. gallisepticum infections.
Collapse
Affiliation(s)
- Yingjie Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shiying Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tengfei Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Mengyun Zou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiuli Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
4
|
Najafiyan B, Bokaii Hosseini Z, Esmaelian S, Firuzpour F, Rahimipour Anaraki S, Kalantari L, Hheidari A, Mesgari H, Nabi-Afjadi M. Unveiling the potential effects of resveratrol in lung cancer treatment: Mechanisms and nanoparticle-based drug delivery strategies. Biomed Pharmacother 2024; 172:116207. [PMID: 38295754 DOI: 10.1016/j.biopha.2024.116207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 03/03/2024] Open
Abstract
Lung cancer ranks among the most prevalent forms of cancer and remains a significant factor in cancer-related mortality across the world. It poses significant challenges to healthcare systems and society as a whole due to its high incidence, mortality rates, and late-stage diagnosis. Resveratrol (RV), a natural compound found in various plants, has shown potential as a nanomedicine for lung cancer treatment. RV has varied effects on cancer cells, including promoting apoptosis by increasing pro-apoptotic proteins (Bax and Bak) and decreasing anti-apoptotic proteins (Bcl-2). It also hinders cell proliferation by influencing important signaling pathways (MAPK, mTOR, PI3K/Akt, and Wnt/β-catenin) that govern cancer progression. In addition, RV acts as a potent antioxidant, diminishing oxidative stress and safeguarding cells against DNA damage. However, using RV alone in cancer treatment has drawbacks, such as low bioavailability, lack of targeting ability, and susceptibility to degradation. In contrast, nanoparticle-based delivery systems address these limitations and hold promise for improving treatment outcomes in lung cancer; nanoparticle formulations of RV offer advantages such as improved drug delivery, increased stability, controlled release, and targeted delivery to lung cancer cells. This article will provide an overview of lung cancer, explore the potential of RV as a therapeutic agent, discuss the benefits and challenges of nanoparticle-based drug delivery, and highlight the promise of RV nanoparticles for cancer treatment, including lung cancer. By optimizing these systems for clinical application, future studies aim to enhance overall treatment outcomes and improve the prognosis for lung cancer patients.
Collapse
Affiliation(s)
- Behnam Najafiyan
- Faculty of Pharmacy, Shiraz University of Medical Science, Shiraz, Iran
| | | | - Samar Esmaelian
- Faculty of Dentistry, Islamic Azad University, Tehran Branch, Tehran, Iran
| | - Faezeh Firuzpour
- Student of Research Committee, Babol University of Medical Sciences, Babol, Iran
| | | | - Leila Kalantari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Hheidari
- Department of Mechanical Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Hassan Mesgari
- Oral and Maxillofacial Surgery Department, Faculty of Dentistry, Islamic Azad University, Tehran Branch, Tehran, Iran.
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
5
|
Feng H, Zhang J, Wang X, Guo Z, Wang L, Zhang K, Li J. Baicalin Protects Broilers against Avian Coronavirus Infection via Regulating Respiratory Tract Microbiota and Amino Acid Metabolism. Int J Mol Sci 2024; 25:2109. [PMID: 38396786 PMCID: PMC10888704 DOI: 10.3390/ijms25042109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/01/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
An increasing amount of evidence indicates that Baicalin (Bai, a natural glycosyloxyflavone compound) exhibits an antiviral effect against avian viruses. However, it remains unclear if the antiviral effect of Bai against infectious bronchitis virus (IBV) is exerted indirectly by modulating respiratory tract microbiota and/or their metabolites. In this study, we investigated the protection efficacy of Bai in protecting cell cultures and broilers from IBV infection and assessed modulation of respiratory tract microbiota and metabolites during infection. Bai was administered orally to broilers by being mixed in with drinking water for seven days. Ultimately, broilers were challenged with live IBV. The results showed that Bai treatment reduced respiratory tract symptoms, improved weight gain, slowed histopathological damage, reduced virus loads and decreased pro-inflammation cytokines production. Western blot analysis demonstrated that Bai treatment significantly inhibited Toll-like receptor 7 (TLR7), myeloid differentiation factor 88 (MyD88) and nuclear factor kappa-B (NF-κB) expression both in cell culture and cells of the trachea. Bai treatment reversed respiratory tract microbiota dysbiosis, as shown by 16S rDNA sequencing in the group of broilers inoculated with IBV. Indeed, we observed a decrease in Proteobacteria abundance and an increase in Firmicutes abundance. Metabolomics results suggest that the pentose phosphate pathway, amino acid and nicotinamide metabolism are linked to the protection conferred by Bai against IBV infection. In conclusion, these results indicated that further assessment of anti-IBV strategies based on Bai would likely result in the development of antiviral molecule(s) which can be administered by being mixed with feed or water.
Collapse
Affiliation(s)
- Haipeng Feng
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (H.F.); (J.Z.); (L.W.); (Z.G.)
| | - Jingyan Zhang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (H.F.); (J.Z.); (L.W.); (Z.G.)
| | - Xuezhi Wang
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China;
| | - Zhiting Guo
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (H.F.); (J.Z.); (L.W.); (Z.G.)
| | - Lei Wang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (H.F.); (J.Z.); (L.W.); (Z.G.)
| | - Kang Zhang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (H.F.); (J.Z.); (L.W.); (Z.G.)
| | - Jianxi Li
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (H.F.); (J.Z.); (L.W.); (Z.G.)
| |
Collapse
|
6
|
Feng YL. A New Frontier in Phytotherapy: Harnessing the Therapeutic Power of Medicinal Herb-derived miRNAs. Curr Pharm Des 2024; 30:3009-3017. [PMID: 39162273 DOI: 10.2174/0113816128310724240730072626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/18/2024] [Accepted: 06/26/2024] [Indexed: 08/21/2024]
Abstract
Medicinal herbs have been utilized in the treatment of various pathologic conditions, including neoplasms, organ fibrosis, and diabetes mellitus. However, the precise pharmacological actions of plant miRNAs in animals remain to be fully elucidated, particularly in terms of their therapeutic efficacy and mechanism of action. In this review, some important miRNAs from foods and medicinal herbs are presented. Plant miRNAs exhibit a range of pharmacological properties, such as anti-cancer, anti-fibrosis, anti-viral, anti-inflammatory effects, and neuromodulation, among others. These results have not only demonstrated a cross-species regulatory effect, but also suggested that the miRNAs from medicinal herbs are their bioactive components. This shows a promising prospect for plant miRNAs to be used as drugs. Here, the pharmacological properties of plant miRNAs and their underlying mechanisms have been highlighted, which can provide new insights for clarifying the therapeutic mechanisms of medicinal herbs and suggest a new way for developing therapeutic drugs.
Collapse
Affiliation(s)
- Ya-Long Feng
- Department of Life Science, Xianyang Normal University, No.43 Wenlin Road, Xianyang 712000, Shaanxi, China
| |
Collapse
|
7
|
Díez-Sainz E, Lorente-Cebrián S, Aranaz P, Amri EZ, Riezu-Boj JI, Milagro FI. miR482f and miR482c-5p from edible plant-derived foods inhibit the expression of pro-inflammatory genes in human THP-1 macrophages. Front Nutr 2023; 10:1287312. [PMID: 38099184 PMCID: PMC10719859 DOI: 10.3389/fnut.2023.1287312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/06/2023] [Indexed: 12/17/2023] Open
Abstract
Background Edible plants can exert anti-inflammatory activities in humans, being potentially useful in the treatment of inflammatory diseases. Plant-derived microRNAs have emerged as cross-kingdom gene expression regulators and could act as bioactive molecules involved in the beneficial effects of some edible plants. We investigated the role of edible plant-derived microRNAs in the modulation of pro-inflammatory human genes. Methods MicroRNAs from plant-derived foods were identified by next-generation sequencing. MicroRNAs with inflammatory putative targets were selected, after performing in silico analyses. The expression of candidate plant-derived miRNAs was analyzed by qPCR in edible plant-derived foods and their effects were evaluated in THP-1 monocytes differentiated to macrophages. The bioavailability of candidate plant miRNAs in humans was evaluated in feces and serum samples by qPCR. Results miR482f and miR482c-5p are present in several edible plant-derived foods, such as fruits, vegetables, and cooked legumes and cereals, and fats and oils. Transfections with miR482f and miR482c-5p mimics decreased the gene expression of CLEC7A and NFAM1, and TRL6, respectively, in human THP-1 monocytes differentiated to macrophages, which had an impact on gene expression profile of inflammatory biomarkers. Both microRNAs (miR482f and miR482c-5p) resisted degradation during digestion and were detected in human feces, although not in serum. Conclusion Our findings suggest that miR482f and miR482c-5p can promote an anti-inflammatory gene expression profile in human macrophages in vitro and their bioavailability in humans can be achieved through diet, but eventually restricted at the gut level.
Collapse
Affiliation(s)
- Ester Díez-Sainz
- Department of Nutrition, Food Science and Physiology/Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Silvia Lorente-Cebrián
- Department of Pharmacology, Physiology and Legal and Forensic Medicine, Faculty of Health and Sport Science, University of Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, Zaragoza, Spain
- Aragón Health Research Institute (IIS-Aragon), Zaragoza, Spain
| | - Paula Aranaz
- Department of Nutrition, Food Science and Physiology/Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | | | - José I. Riezu-Boj
- Department of Nutrition, Food Science and Physiology/Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Fermín I. Milagro
- Department of Nutrition, Food Science and Physiology/Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
8
|
Chen Y, Jiang Y, Liu X, Chen X, Fan Q, Xiao Z. Polydatin alleviates mycoplasma pneumoniae-induced injury via inhibition of Caspase-1/GSDMD-dependent pyroptosis. Int J Med Microbiol 2023; 313:151586. [PMID: 37776814 DOI: 10.1016/j.ijmm.2023.151586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 07/27/2023] [Accepted: 09/21/2023] [Indexed: 10/02/2023] Open
Abstract
Mycoplasma pneumoniae (MP) is one of the main pathogens causing community acquired pneumonia (CAP) in children and adults. Previous pharmacological and clinical studies have shown that Polydatin (PD) exerts anti-inflammatory action by conferring protective benefit in MP pneumonia. However, the mechanism underlying the of PD on MP infection remains unclear. It was found that PD alleviated MP-induced injury by inhibiting caspase-1/gasdermin D (GSDMD)-mediated epithelial pyroptosis. The results demonstrated that PD inhibited the transformation of GSDMD to N-terminal gasdermin-N (GSDMD-N) by decreasing caspase-1 activation, as well as suppressed the formation and secretion of interleukin-1β (IL-1β) and interleukin-18 (IL-18), reversed Na, K-ATPase reduction, and suppressed LDH release both in vitro and vivo. Taken together, epithelial pyroptosis in BEAS-2B cells and lung injury in mice were prevented by PD. In conclusion, PD suppressed pulmonary injury triggered by MP infection, by inhibiting the caspase-1/GSDMD-mediated epithelial pyroptosis signaling pathway. Thus, PD may be regarded as a potential therapy for MP-induced inflammation.
Collapse
Affiliation(s)
- Yiliu Chen
- Department of Pediatric, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Yonghong Jiang
- Department of Pediatric, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Xiuxiu Liu
- Department of Pediatric, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Xiufeng Chen
- Department of Pediatric, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Qiuyue Fan
- Department of Pediatric, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Zhen Xiao
- Department of Pediatric, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|
9
|
Wang Y, Sun H, Zhao W, Wang T, Zou M, Han Y, Sun Y, Peng X. Low let-7d microRNA levels in chick embryos enhance innate immunity against Mycoplasma gallisepticum by suppressing the mitogen-activated protein kinase pathway. Vet Res 2023; 54:50. [PMID: 37337278 DOI: 10.1186/s13567-023-01178-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/25/2023] [Indexed: 06/21/2023] Open
Abstract
Chick embryos are a valuable model for studying immunity and vaccines. Therefore, it is crucial to investigate the molecular mechanism of the Mycoplasma gallisepticum (MG)-induced immune response in chick embryos for the prevention and control of MG. In this study, we screened for downregulated let-7d microRNA in MG-infected chicken embryonic lungs to explore its involvement in the innate immune mechanism against MG. Here, we demonstrated that low levels of let-7d are a protective mechanism for chicken embryo primary type II pneumocytes (CP-II) in the presence of MG. Specifically, we found that depressed levels of let-7 in CP-II cells reduced the adhesion capacity of MG. This suppressive effect was achieved through the activated mitogen-activated protein kinase phosphatase 1 (MKP1) target gene and the inactivated mitogen-activated protein kinase (MAPK) pathway. Furthermore, MG-induced hyperinflammation and cell death were both alleviated by downregulation of let-7d. In conclusion, chick embryos protect themselves against MG infection through the innate immune molecule let-7d, which may result from its function as an inhibitor of the MAPK pathway to effectively mitigate MG adhesion, the inflammatory response and cell apoptosis. This study may provide new insight into the development of vaccines against MG.
Collapse
Affiliation(s)
- Yingjie Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Huanling Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Wenqing Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Tengfei Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Mengyun Zou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yun Han
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yingfei Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xiuli Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
10
|
Zou M, Wang T, Wang Y, Luo R, Sun Y, Peng X. Comparative Transcriptome Analysis Reveals the Innate Immune Response to Mycoplasma gallisepticum Infection in Chicken Embryos and Newly Hatched Chicks. Animals (Basel) 2023; 13:ani13101667. [PMID: 37238096 DOI: 10.3390/ani13101667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/02/2023] [Accepted: 04/12/2023] [Indexed: 05/28/2023] Open
Abstract
Mycoplasma gallisepticum (MG) is a major cause of chronic respiratory diseases in chickens, with both horizontal and vertical transmission modes and varying degrees of impact on different ages. The innate immune response is crucial in resisting MG infection. Therefore, this study aimed to investigate the innate immune response of chicken embryos and newly hatched chicks to MG infection using comparative RNA-seq analysis. We found that MG infection caused weight loss and immune damage in both chicken embryos and chicks. Transcriptome sequencing analysis revealed that infected chicken embryos had a stronger immune response than chicks, as evidenced by the higher number of differentially expressed genes associated with innate immunity and inflammation. Toll-like receptor and cytokine-mediated pathways were the primary immune response pathways in both embryos and chicks. Furthermore, TLR7 signaling may play an essential role in the innate immune response to MG infection. Overall, this study sheds light on the development of innate immunity to MG infection in chickens and can help in devising disease control strategies.
Collapse
Affiliation(s)
- Mengyun Zou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Tengfei Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingjie Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Ronglong Luo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingfei Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuli Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
11
|
Wang S, Jin X, Chen H, Han M, Bao J, Niu D, Wang Y, Li R, Wu Z, Li J. Quercetin alleviates Mycoplasma gallisepticum-induced inflammatory damage and oxidative stress through inhibition of TLR2/MyD88/NF-κB pathway in vivo and in vitro. Microb Pathog 2023; 176:106006. [PMID: 36746315 DOI: 10.1016/j.micpath.2023.106006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/08/2023] [Accepted: 01/25/2023] [Indexed: 02/07/2023]
Abstract
Chronic respiratory disease (CRD) caused by Mycoplasma gallisepticum (MG) in chickens leads to enormous economic damage to the poultry industry yearly. The active components and mechanism of action of the traditional herbal remedy Ephedra houttuynia powder (EHP), which had been approved for clinical treatment against MG infection in China, remain unknown. In this study, the active components of EHP against MG were screened using a network pharmacological method, additionally, we studied the mechanism of action of the screened results (quercetin (QUE)). The findings demonstrated that QUE was an essential element of EHP against MG infection, effectively attenuating MG-induced oxidative stress and activation of the TLR2/MyD88/NF-κB pathway. Following QUE therapy, IL-1, IL-6, and TNF-α content and expression were downregulated, whereas IL-4 and IL-10 expression were upregulated, eventually suppressing the inflammatory response both in vitro and in vivo. Together, this study presents a strong rationale for using QUE as a therapeutic strategy to inhibit MG infection-induced inflammatory damage and oxidative stress.
Collapse
Affiliation(s)
- Shun Wang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China
| | - Xiaodi Jin
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China
| | - Hao Chen
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China
| | - Mingdong Han
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China
| | - Jiaxin Bao
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China
| | - Dong Niu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China
| | - Yikang Wang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China
| | - Rui Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China
| | - Zhiyong Wu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China; Institute of Chinese Materia Medica, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, 150036, PR China.
| | - Jichang Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China.
| |
Collapse
|
12
|
Zhu Y, Luo L, Zhang M, Song X, Wang P, Zhang H, Zhang J, Liu D. Xuanfei Baidu Formula attenuates LPS-induced acute lung injury by inhibiting the NF-κB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115833. [PMID: 36252879 PMCID: PMC9562620 DOI: 10.1016/j.jep.2022.115833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/29/2022] [Accepted: 10/09/2022] [Indexed: 05/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acute lung injury (ALI) is a common manifestation of COVID-19. Xuanfei Baidu Formula(XFBD) is used in China to treat mild or common damp-toxin obstructive pulmonary syndrome in COVID-19 patients. However, the active ingredients of XFBD have not been extensively studied, and its mechanism of action in the treatment of ALI is not well understood. AIM OF THE STUDY The purpose of this study was to investigate the mechanism of action of XFBD in treating ALI in rats, by evaluating its active components. MATERIALS AND METHODS Firstly, the chemical composition of XFBD was identified using ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry. The potential targets of XFBD for ALI treatment were predicted using network pharmacological analysis. Finally, the molecular mechanism of XFBD was validated using a RAW264.7 cell inflammation model and a mouse ALI model. RESULTS A total of 113 compounds were identified in XFBD. Network pharmacology revealed 34 hub targets between the 113 compounds and ALI. The results of Kyoto Encyclopedia of Genes and Genomes and gene ontology analyses indicated that the NF-κB signaling pathway was the main pathway for XFBD in the treatment of ALI. We found that XFBD reduced proinflammatory factor levels in LPS-induced cellular models. By examining the lung wet/dry weight ratio and pathological sections in vivo, XFBD was found that XFBD could alleviate ALI. Immunohistochemistry results showed that XFBD inhibited ALI-induced increases in p-IKK, p-NF-κB p65, and iNOS proteins. In vitro experiments demonstrated that XFBD inhibited LPS-induced activation of the NF-κB pathway. CONCLUSION This study identified the potential practical components of XFBD, combined with network pharmacology and experimental validation to demonstrate that XFBD can alleviate lung injury caused by ALI by inhibiting the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yanru Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, China
| | - Lifei Luo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, China
| | - Meng Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, China
| | - Xinbo Song
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, China
| | - Ping Wang
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, China
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingze Zhang
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, China
| | - Dailin Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, China.
| |
Collapse
|
13
|
Host resistance to Mycoplasma gallisepticum infection is enhanced by inhibiting PI3K/Akt pathway in Andrographolide-treating chickens. Int Immunopharmacol 2022; 113:109419. [DOI: 10.1016/j.intimp.2022.109419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/12/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022]
|
14
|
Sun Y, Wang Y, Zou M, Wang T, Wang L, Peng X. Lnc90386 Sponges miR-33-5p to Mediate Mycoplasma gallisepticum-Induced Inflammation and Apoptosis in Chickens via the JNK Pathway. Front Immunol 2022; 13:887602. [PMID: 35833119 PMCID: PMC9271562 DOI: 10.3389/fimmu.2022.887602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/20/2022] [Indexed: 11/30/2022] Open
Abstract
Mycoplasma gallisepticum (MG) is one of the most important pathogens, that causes chronic respiratory disease (CRD) in chickens. Long non-coding RNAs (lncRNAs) are emerging as new regulators for many diseases and some lncRNAs can function as competing endogenous RNAs (ceRNAs) to regulate mRNAs by competitively binding to miRNAs. Here, we found that miR-33-5p was significantly up-regulated both in MG-infected chicken embryonic lungs and chicken embryo fibroblast cells (DF-1), and Lnc90386 negatively correlated with miR-33-5p. miR-33-5p, as a new regulator for MG infection, repressed apoptosis, inflammatory factors in DF-1 cells by targeting JNK1. Further analyses showed that Lnc90386 sponged miR-33-5p to weaken its inhibitory effect on JNK1, forming the ceRNA regulatory network. Furthermore, knockdown of Lnc90386 significantly inhibited apoptosis and inflammatory factors, and promoted DF-1 cells proliferation. However, co-treatment with miR-33-5p inhibitor and Lnc90386 siRNA showed that knockdown of Lnc90386 could partially eliminate the inhibiting effect of miR-33-5p inhibitor on inflammation, cell apoptosis and proliferation. In conclusion, Lnc90386 sponges miR-33-5p to defend against MG infection by inhibiting the JNK signaling pathway.
Collapse
|
15
|
Wang Y, Wang L, Luo R, Sun Y, Zou M, Wang T, Guo Q, Peng X. Glycyrrhizic Acid against Mycoplasma gallisepticum-Induced Inflammation and Apoptosis Through Suppressing the MAPK Pathway in Chickens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1996-2009. [PMID: 35128924 DOI: 10.1021/acs.jafc.1c07848] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mycoplasma gallisepticum (MG) is the primary pathogen of chronic respiratory diseases (CRDs) in chickens. In poultry production, antibiotics are mostly used to prevent and control MG infection, but the drug resistance and residue problems caused by them cannot be ignored. Glycyrrhizic acid (GA) is derived from licorice, a herb traditionally used to treat various respiratory diseases. Our study results showed that GA significantly inhibited the mRNA and protein expression of pMGA1.2 and GapA in vitro and in vivo. Furthermore, the network pharmacology study revealed that GA most probably resisted MG infection through the MAPK signaling pathway. Our results demonstrated that GA inhibited MG-induced expression of MMP2/MMP9 and inflammatory factors through the p38 and JUN signaling pathways, but not the ERK pathway in vitro. Besides, histopathological sections showed that GA treatment obviously attenuated tracheal and lung damage caused by MG invasion. In conclusion, GA can inhibit MG-triggered inflammation and apoptosis by suppressing the expression of MMP2/MMP9 through the JNK and p38 pathways and inhibit the expression of virulence genes to resist MG. Our results suggest that GA might serve as one of the antibiotic alternatives to prevent MG infection.
Collapse
Affiliation(s)
- Yingjie Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Lulu Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Ronglong Luo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Yingfei Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Mengyun Zou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Tengfei Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Qiao Guo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Xiuli Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| |
Collapse
|
16
|
Wang Y, Han Y, Wang L, Zou M, Sun Y, Sun H, Guo Q, Peng X. Mycoplasma gallisepticum escapes the host immune response via gga-miR-365-3p/SOCS5/STATs axis. Vet Res 2022; 53:103. [PMID: 36471418 PMCID: PMC9721073 DOI: 10.1186/s13567-022-01117-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/16/2022] [Indexed: 12/09/2022] Open
Abstract
A disruption in the expression of gga-miR-365-3p was confirmed in the Mycoplasma gallisepticum (MG)-infected Chicken primary alveolar type II epithelial (CP-II) cells based on previous sequencing results, but the role it plays in the infection was unclear. In the present study, we demonstrate that MG evaded cellular host immunity via a gga-miR-365-3p/SOCS5-JAK/STATs negative feedback loop. Specifically, we found that at the initial stage of MG infection in cells, gga-miR-365-3p was rapidly increased and activated the JAK/STAT signaling pathway by inhibiting SOCS5, which induced the secretion of inflammatory factors and triggered immune response against MG infection. Over time, though, the infection progressed, MG gradually destroyed the immune defences of CP-II cells. In late stages of infection, MG escaped host immunity by reducing intracellular gga-miR-365-3p and inhibiting the JAK/STAT pathway to suppress the secretion of inflammatory factors and promote MG adhesion or invasion. These results revealed the game between MG and host cell interactions, providing a new perspective to gain insight into the pathogenic mechanisms of MG or other pathogens. Meanwhile, they also contributed to novel thoughts on the prevention and control of MG and other pathogenic infections, shedding light on the immune modulating response triggered by pathogen invasion and their molecular targeting.
Collapse
Affiliation(s)
- Yingjie Wang
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Hubei 430070 Wuhan, China
| | - Yun Han
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Hubei 430070 Wuhan, China
| | - Lulu Wang
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Hubei 430070 Wuhan, China
| | - Mengyun Zou
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Hubei 430070 Wuhan, China
| | - Yingfei Sun
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Hubei 430070 Wuhan, China
| | - Huanling Sun
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Hubei 430070 Wuhan, China
| | - Qiao Guo
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Hubei 430070 Wuhan, China
| | - Xiuli Peng
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Hubei 430070 Wuhan, China
| |
Collapse
|
17
|
Effects of cytokine signaling inhibition on inflammation-driven tissue remodeling. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100023. [PMID: 34909658 PMCID: PMC8663982 DOI: 10.1016/j.crphar.2021.100023] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
Fibrosis is a common condition that can affect all body tissues, driven by unresolved tissue inflammation and resulting in tissue dysfunction and organ failure that could ultimately lead to death. A myriad of factors are thought to contribute to fibrosis and, although it is relatively common, treatments focusing on reversing fibrosis are few and far between. The process of fibrosis involves a variety of cell types, including epithelial, endothelial, and mesenchymal cells, as well as immune cells, which have been shown to produce pro-fibrotic cytokines. Advances in our understanding of the molecular mechanisms of inflammation-driven tissue fibrosis and scar formation have led to the development of targeted therapeutics aiming to prevent, delay, or even reverse tissue fibrosis. In this review, we describe promising targets and agents in development, with a specific focus on cytokines that have been well-described to play a role in fibrosis: IL-1, TNF-α, IL-6, and TGF-β. An array of small molecule inhibitors, natural compounds, and biologics have been assessed in vivo, in vivo, and in the clinic, demonstrating the capacity to either directly interfere with pro-fibrotic pathways or to block intracellular enzymes that control fibrosis-related signaling pathways. Targeting pro-fibrotic cytokines, potentially via a multi-pronged approach, holds promise for the treatment of inflammation-driven fibrotic diseases in numerous organs. Despite the complexity of the interplay of cytokines in fibrotic tissues, the breadth of the currently ongoing research targeting cytokines suggests that these may hold the key to mitigating tissue fibrosis and reducing organ damage in the future.
Collapse
|
18
|
Doustimotlagh AH, Eftekhari M. Glucose-6-phosphate dehydrogenase inhibitor for treatment of severe COVID-19: Polydatin. Clin Nutr ESPEN 2021; 43:197-199. [PMID: 34024514 PMCID: PMC7959677 DOI: 10.1016/j.clnesp.2021.02.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/12/2021] [Accepted: 02/26/2021] [Indexed: 02/08/2023]
Abstract
The COVID-19 pandemic as the largest global public health crisis is now considered as an emergency at the World Health Organization (WHO). As there is no specific therapy for SARS-CoV-2 infection at present and also because of the long time it takes to discover a new drug and the urgent need to respond urgently to a pandemic infection. Perhaps the best way right now is to find an FDA-approved drug to treat this infection. Oxidative stress and inflammation play a vital role in the progression of tissue injury in COVID-19 patients; furthermore, the G6PD activation is related to increased oxidative inflammation in acute pulmonary injury. In this regard, we propose a new insight that may be a good strategy for this urgency. Exploiting G6PD through inhibiting G6PD activity by modifying redox balance, metabolic switching and protein-protein interactions can be proposed as a new approach to improving patients in severe stage of COVID 19 through various mechanisms. Polydatin is isolated from many plants such as Polygonum, peanuts, grapes, red wines and many daily diets that can be used in severe stage of COVID-19 as a G6PD inhibitor. Furthermore, polydatin possesses various biological activities such as anti-inflammatory, antioxidant, immunoregulatory, nephroprotective, hepatoprotective, anti-arrhythmic and anti-tumor. Our hypothesis is that the consumption of antioxidants such as Polydatin (a glucoside of resveratrol) as a complementary therapeutic approach may be effective in reducing oxidative stress and inflammation in patients with COVID-19.
Collapse
Affiliation(s)
| | - Mahdieh Eftekhari
- Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
19
|
Surai PF, Kochish II, Kidd MT. Redox Homeostasis in Poultry: Regulatory Roles of NF-κB. Antioxidants (Basel) 2021; 10:186. [PMID: 33525511 PMCID: PMC7912633 DOI: 10.3390/antiox10020186] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Redox biology is a very quickly developing area of modern biological sciences, and roles of redox homeostasis in health and disease have recently received tremendous attention. There are a range of redox pairs in the cells/tissues responsible for redox homeostasis maintenance/regulation. In general, all redox elements are interconnected and regulated by various means, including antioxidant and vitagene networks. The redox status is responsible for maintenance of cell signaling and cell stress adaptation. Physiological roles of redox homeostasis maintenance in avian species, including poultry, have received limited attention and are poorly characterized. However, for the last 5 years, this topic attracted much attention, and a range of publications covered some related aspects. In fact, transcription factor Nrf2 was shown to be a master regulator of antioxidant defenses via activation of various vitagenes and other protective molecules to maintain redox homeostasis in cells/tissues. It was shown that Nrf2 is closely related to another transcription factor, namely, NF-κB, responsible for control of inflammation; however, its roles in poultry have not yet been characterized. Therefore, the aim of this review is to describe a current view on NF-κB functioning in poultry with a specific emphasis to its nutritional modulation under various stress conditions. In particular, on the one hand, it has been shown that, in many stress conditions in poultry, NF-κB activation can lead to increased synthesis of proinflammatory cytokines leading to systemic inflammation. On the other hand, there are a range of nutrients/supplements that can downregulate NF-κB and decrease the negative consequences of stress-related disturbances in redox homeostasis. In general, vitagene-NF-κB interactions in relation to redox balance homeostasis, immunity, and gut health in poultry production await further research.
Collapse
Affiliation(s)
- Peter F. Surai
- Department of Biochemistry, Vitagene and Health Research Centre, Bristol BS4 2RS, UK
- Department of Hygiene and Poultry Sciences, Moscow State Academy of Veterinary Medicine and Biotechnology named after K. I. Skryabin, 109472 Moscow, Russia;
- Department of Biochemistry and Physiology, Saint-Petersburg State Academy of Veterinary Medicine, 196084 St. Petersburg, Russia
- Department of Microbiology and Biochemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
- Department of Animal Nutrition, Faculty of Agricultural and Environmental Sciences, Szent Istvan University, H-2103 Gödöllo, Hungary
| | - Ivan I. Kochish
- Department of Hygiene and Poultry Sciences, Moscow State Academy of Veterinary Medicine and Biotechnology named after K. I. Skryabin, 109472 Moscow, Russia;
| | - Michael T. Kidd
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
| |
Collapse
|
20
|
Meng T, Xiao D, Muhammed A, Deng J, Chen L, He J. Anti-Inflammatory Action and Mechanisms of Resveratrol. Molecules 2021; 26:molecules26010229. [PMID: 33466247 PMCID: PMC7796143 DOI: 10.3390/molecules26010229] [Citation(s) in RCA: 333] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023] Open
Abstract
Resveratrol (3,4',5-trihy- droxystilbene), a natural phytoalexin polyphenol, exhibits anti-oxidant, anti-inflammatory, and anti-carcinogenic properties. This phytoalexin is well-absorbed and rapidly and extensively metabolized in the body. Inflammation is an adaptive response, which could be triggered by various danger signals, such as invasion by microorganisms or tissue injury. In this review, the anti-inflammatory activity and the mechanism of resveratrol modulates the inflammatory response are examined. Multiple experimental studies that illustrate regulatory mechanisms and the immunomodulatory function of resveratrol both in vivo and in vitro. The data acquired from those studies are discussed.
Collapse
Affiliation(s)
- Tiantian Meng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (T.M.); (A.M.); (J.D.)
| | - Dingfu Xiao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (T.M.); (A.M.); (J.D.)
- Correspondence: (D.X.); (J.H.)
| | - Arowolo Muhammed
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (T.M.); (A.M.); (J.D.)
| | - Juying Deng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (T.M.); (A.M.); (J.D.)
| | - Liang Chen
- Huaihua Institute of Agricultural Sciences, No.140 Yingfeng East Road, Hecheng District, Huaihua 418000, China;
| | - Jianhua He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (T.M.); (A.M.); (J.D.)
- Correspondence: (D.X.); (J.H.)
| |
Collapse
|