1
|
Lu L, Zhao Y, Li M, Wang X, Zhu J, Liao L, Wang J. Contemporary strategies and approaches for characterizing composition and enhancing biofilm penetration targeting bacterial extracellular polymeric substances. J Pharm Anal 2024; 14:100906. [PMID: 38634060 PMCID: PMC11022105 DOI: 10.1016/j.jpha.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/08/2023] [Accepted: 11/26/2023] [Indexed: 04/19/2024] Open
Abstract
Extracellular polymeric substances (EPS) constitutes crucial elements within bacterial biofilms, facilitating accelerated antimicrobial resistance and conferring defense against the host's immune cells. Developing precise and effective antibiofilm approaches and strategies, tailored to the specific characteristics of EPS composition, can offer valuable insights for the creation of novel antimicrobial drugs. This, in turn, holds the potential to mitigate the alarming issue of bacterial drug resistance. Current analysis of EPS compositions relies heavily on colorimetric approaches with a significant bias, which is likely due to the selection of a standard compound and the cross-interference of various EPS compounds. Considering the pivotal role of EPS in biofilm functionality, it is imperative for EPS research to delve deeper into the analysis of intricate compositions, moving beyond the current focus on polymeric materials. This necessitates a shift from heavy reliance on colorimetric analytic methods to more comprehensive and nuanced analytical approaches. In this study, we have provided a comprehensive summary of existing analytical methods utilized in the characterization of EPS compositions. Additionally, novel strategies aimed at targeting EPS to enhance biofilm penetration were explored, with a specific focus on highlighting the limitations associated with colorimetric methods. Furthermore, we have outlined the challenges faced in identifying additional components of EPS and propose a prospective research plan to address these challenges. This review has the potential to guide future researchers in the search for novel compounds capable of suppressing EPS, thereby inhibiting biofilm formation. This insight opens up a new avenue for exploration within this research domain.
Collapse
Affiliation(s)
- Lan Lu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
| | - Yuting Zhao
- Meishan Pharmaceutical Vocational College, School of Pharmacy, Meishan, Sichuan, 620200, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xiaobo Wang
- Hepatobiliary Surgery, Langzhong People's Hospital, Langzhong, Sichuan, 646000, China
| | - Jie Zhu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
| | - Li Liao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
| | - Jingya Wang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
| |
Collapse
|
2
|
Vadakkan K, Ngangbam AK, Sathishkumar K, Rumjit NP, Cheruvathur MK. A review of chemical signaling pathways in the quorum sensing circuit of Pseudomonas aeruginosa. Int J Biol Macromol 2024; 254:127861. [PMID: 37939761 DOI: 10.1016/j.ijbiomac.2023.127861] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
Pseudomonas aeruginosa, an increasingly common competitive and biofilm organism in healthcare infection with sophisticated, interlinked and hierarchic quorum systems (Las, Rhl, PQS, and IQS), creates the greatest threats to the medical industry and has rendered prevailing chemotherapy medications ineffective. The rise of multidrug resistance has evolved into a concerning and potentially fatal occurrence for human life. P. aeruginosa biofilm development is assisted by exopolysaccharides, extracellular DNA, proteins, macromolecules, cellular signaling and interaction. Quorum sensing is a communication process between cells that involves autonomous inducers and regulators. Quorum-induced infectious agent biofilms and the synthesis of virulence factors have increased disease transmission, medication resistance, infection episodes, hospitalizations and mortality. Hence, quorum sensing may be a potential therapeutical target for bacterial illness, and developing quorum inhibitors as an anti-virulent tool could be a promising treatment strategy for existing antibiotics. Quorum quenching is a prevalent technique for treating infections caused by microbes because it diminishes microbial pathogenesis and increases microbe biofilm sensitivity to antibiotics, making it a potential candidate for drug development. This paper examines P. aeruginosa quorum sensing, the hierarchy of quorum sensing mechanism, quorum sensing inhibition and quorum sensing inhibitory agents as a drug development strategy to supplement traditional antibiotic strategies.
Collapse
Affiliation(s)
- Kayeen Vadakkan
- Department of Biology, St. Mary's College, Thrissur, Kerala 680020, India; Manipur International University, Imphal, Manipur 795140, India.
| | | | - Kuppusamy Sathishkumar
- Rhizosphere Biology Laboratory, Department of Microbiology, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620024, India; Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602 105, Tamil Nadu, India
| | | | | |
Collapse
|
3
|
Proctor CR, Taggart MG, O'Hagan BM, McCarron PA, McCarthy RR, Ternan NG. Furanone loaded aerogels are effective antibiofilm therapeutics in a model of chronic Pseudomonas aeruginosa wound infection. Biofilm 2023; 5:100128. [PMID: 37223215 PMCID: PMC10200818 DOI: 10.1016/j.bioflm.2023.100128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/25/2023] Open
Abstract
Almost 80% of chronic wounds have a bacterial biofilm present. These wound biofilms are caused by a range of organisms and are often polymicrobial. Pseudomonas aeruginosa is one of the most common causative organisms in wound infections and readily forms biofilms in wounds. To coordinate this, P. aeruginosa uses a process known as quorum sensing. Structural homologues of the quorum sensing signalling molecules have been used to disrupt this communication and prevent biofilm formation by Pseudomonas. However, these compounds have not yet reached clinical use. Here, we report the production and characterisation of a lyophilised PVA aerogel for use in delivering furanones to wound biofilms. PVA aerogels successfully release a model antimicrobial and two naturally occurring furanones in an aqueous environment. Furanone loaded aerogels inhibited biofilm formation in P. aeruginosa by up to 98.80%. Further, furanone loaded aerogels successfully reduced total biomass of preformed biofilms. Treatment with a sotolon loaded aerogel yielded a 5.16 log reduction in viable biofilm bound cells in a novel model of chronic wound biofilm, equivalent to the current wound therapy Aquacel AG. These results highlight the potential utility of aerogels in drug delivery to infected wounds and supports the use of biofilm inhibitory compounds as wound therapeutics.
Collapse
Affiliation(s)
- Chris R. Proctor
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Northern Ireland, UK
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Northern Ireland, UK
- Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Megan G. Taggart
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Northern Ireland, UK
| | - Barry M.G. O'Hagan
- Genomic Medicine Research Group, School of Biomedical Sciences, Ulster University, Northern Ireland, UK
| | - Paul A. McCarron
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Northern Ireland, UK
| | - Ronan R. McCarthy
- Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Nigel G. Ternan
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Northern Ireland, UK
| |
Collapse
|
4
|
Yang Y, Chen R, Rahman MU, Wei C, Fan B. The sprT Gene of Bacillus velezensis FZB42 Is Involved in Biofilm Formation and Bacilysin Production. Int J Mol Sci 2023; 24:16815. [PMID: 38069139 PMCID: PMC10706128 DOI: 10.3390/ijms242316815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Bacillus velezensis FZB42, a representative strain of plant-growth-promoting rhizobacteria (PGPR), can form robust biofilm and produce multiple antibiotics against a wild range of phytopathogens. In this study, we observed different biofilm morphology of the mutant Y4, derived from a TnYLB-1 transposon insertion library of B. velezensis FZB42. We identified that the transposon was inserted into the sprT gene in Y4. Our bioinformatics analysis revealed that the SprT protein is an unstable hydrophilic protein located in the cytoplasm. It is highly conserved in Bacillus species and predicted to function as a metalloprotease by binding zinc ions. We also demonstrated that ΔsprT significantly reduced the swarming ability of FZB42 by ~5-fold and sporulation capacity by ~25-fold. In addition, the antagonistic experiments showed that, compared to the wild type, the ΔsprT strain exhibited significantly reduced inhibition against Staphylococcus aureus ATCC-9144 and Phytophthora sojae, indicating that the inactivation of sprT led to decreased production of the antibiotic bacilysin. The HPLC-MS analysis confirmed that bacilysin was indeed decreased in the ΔsprT strain, and qPCR analysis revealed that ΔsprT down-regulated the expression of the genes for bacilysin biosynthesis. Our results suggest that the sprT gene plays a regulatory role in multiple characteristics of B. velezensis FZB42, including biofilm formation, swarming, sporulation, and antibiotic production.
Collapse
Affiliation(s)
- Yihan Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China;
- College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (R.C.); (M.U.R.); (C.W.)
| | - Ruofu Chen
- College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (R.C.); (M.U.R.); (C.W.)
| | - Mati Ur Rahman
- College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (R.C.); (M.U.R.); (C.W.)
| | - Chunyue Wei
- College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (R.C.); (M.U.R.); (C.W.)
| | - Ben Fan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China;
- College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (R.C.); (M.U.R.); (C.W.)
| |
Collapse
|
5
|
Yin L, Gou Y, Dai Y, Wang T, Gu K, Tang T, Hussain S, Huang X, He C, Liang X, Shu G, Xu F, Ouyang P. Cinnamaldehyde Restores Ceftriaxone Susceptibility against Multidrug-Resistant Salmonella. Int J Mol Sci 2023; 24:ijms24119288. [PMID: 37298240 DOI: 10.3390/ijms24119288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/08/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
In recent years, infections caused by multidrug-resistant (MDR) bacteria have greatly threatened human health and imposed a burden on global public health. To overcome this crisis, there is an urgent need to seek effective alternatives to single antibiotic therapy to circumvent drug resistance and prevent MDR bacteria. According to previous reports, cinnamaldehyde exerts antibacterial activity against drug-resistant Salmonella spp. This study was conducted to investigate whether cinnamaldehyde has a synergistic effect on antibiotics when used in combination, we found that cinnamaldehyde enhanced the antibacterial activity of ceftriaxone sodium against MDR Salmonella in vitro by significantly reduced the expression of extended-spectrum beta-lactamase, inhibiting the development of drug resistance under ceftriaxone selective pressure in vitro, damaging the cell membrane, and affecting its basic metabolism. In addition, it restored the activity of ceftriaxone sodium against MDR Salmonella in vivo and inhibited peritonitis caused by ceftriaxone resistant strain of Salmonella in mice. Collectively, these results revealed that cinnamaldehyde can be used as a novel ceftriaxone adjuvant to prevent and treat infections caused by MDR Salmonella, mitigating the possibility of producing further mutant strains.
Collapse
Affiliation(s)
- Lizi Yin
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Lu 211, Chengdu 611130, China
| | - Yuhong Gou
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Lu 211, Chengdu 611130, China
| | - Yuyun Dai
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Lu 211, Chengdu 611130, China
| | - Tao Wang
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Lu 211, Chengdu 611130, China
| | - Kexin Gu
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Lu 211, Chengdu 611130, China
| | - Ting Tang
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Lu 211, Chengdu 611130, China
| | - Sajjad Hussain
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Lu 211, Chengdu 611130, China
| | - Xiaoli Huang
- College of Animal Science and Technology, Sichuan Agriculture University, Huimin Lu 211, Chengdu 611130, China
| | - Changliang He
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Lu 211, Chengdu 611130, China
| | - Xiaoxia Liang
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Lu 211, Chengdu 611130, China
| | - Gang Shu
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Lu 211, Chengdu 611130, China
| | - Funeng Xu
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Lu 211, Chengdu 611130, China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Lu 211, Chengdu 611130, China
| |
Collapse
|
6
|
Rather MA, Saha D, Bhuyan S, Jha AN, Mandal M. Quorum Quenching: A Drug Discovery Approach Against Pseudomonas aeruginosa. Microbiol Res 2022; 264:127173. [PMID: 36037563 DOI: 10.1016/j.micres.2022.127173] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/06/2022] [Accepted: 08/14/2022] [Indexed: 11/19/2022]
Abstract
Pseudomonas aeruginosa, a ubiquitous opportunistic and nosocomial biofilm-forming pathogen with complex, interconnected and hierarchical nature of QS systems (Las, Rhl, PQS, and IQS), is posing the biggest challenge to the healthcare sector and have made current chemotherapies incapable. Conventional antibiotics designed to intercept the biochemical or physiological processes precisely of planktonic microorganisms exert extreme selective pressure and develop resistance against them thereby emphasizing the development of alternative therapeutic approaches. Additionally, quorum sensing induced pathogenic microbial biofilms and production of virulence factors have intensified the pathogenicity, drug resistance, recurrence of infections, hospital visits, morbidity, and mortality many-folds. In this regard, QS could be a potential druggable target and the discovery of QS inhibiting agents as an anti-virulent measure could serve as an alternative therapeutic approach to conventional antibiotics. Quorum quenching (QQ) is a preferred strategy to combat microbial infections since it attenuates the pathogenicity of microbes and enhances the microbial biofilm susceptibility to antibiotics, thus qualifying as a suitable target for drug discovery. This review discusses the QS-induced pathogenicity of P. aeruginosa, the hierarchical QS systems, and QS inhibition as a drug discovery approach to complement classical antibiotic strategy.
Collapse
Affiliation(s)
- Muzamil Ahmad Rather
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Debanjan Saha
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Shuvam Bhuyan
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Anupam Nath Jha
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Manabendra Mandal
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India.
| |
Collapse
|
7
|
Ghoreishi FS, Roghanian R, Emtiazi G. Novel Chronic Wound Healing by Anti-biofilm Peptides and Protease. Adv Pharm Bull 2021; 12:424-436. [PMID: 35935044 PMCID: PMC9348543 DOI: 10.34172/apb.2022.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/23/2021] [Accepted: 03/25/2021] [Indexed: 11/25/2022] Open
Abstract
Chronic wounds have made a challenge in medical healthcare due to their biofilm infections, which reduce the penetrance of the antibacterial agents in the injury site. In infected wounds, the most common bacterial strains are Staphylococcus aureus and Pseudomonas aeruginosa. Biofilm disruption in chronic wounds is crucial in wound healing. Due to their broad-spectrum antibacterial properties and fewer side effects, anti-biofilm peptides, especially bacteriocins, are promising in the healing of chronic wounds by biofilm destruction. This study reviews the effects of antimicrobial and anti-biofilm agents, including bacteriocins and protease enzymes as a novel approach, on wound healing, along with analyzing the molecular docking between a bacterial protease and biofilm components. Among a large number of anti-biofilm bacteriocins identified up to now, seven types have been registered in the antimicrobial peptides (AMPs) database. Although it is believed that bacterial proteases are harmful in wound healing, it has recently been demonstrated that these proteases like the human serine protease, in combination with AMPs, can improve wound healing by biofilm destruction. In this work, docking results between metalloprotease from Paenibacillus polymyxa and proteins of S. aureus and P. aeruginosa involved in biofilm production, showed that this bacterial protease could efficiently interact with biofilm components. Infected wound healing is an important challenge in clinical trials due to biofilm production by bacterial pathogens. Therefore, simultaneous use of proteases or anti-biofilm peptides with antimicrobial agents could be a promising method for chronic wound healing.
Collapse
Affiliation(s)
- Fatemeh Sadat Ghoreishi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Rasoul Roghanian
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Giti Emtiazi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|