1
|
Tang H, Zhan Z, Liu X, Huang X. Propionylation of Fis K32 in Salmonella enterica serovar Typhi: a key modification affecting pathogenicity. Future Microbiol 2025; 20:295-303. [PMID: 39885648 PMCID: PMC11938949 DOI: 10.1080/17460913.2025.2460338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/27/2025] [Indexed: 02/01/2025] Open
Abstract
AIM This study aims to explore the role of propionylation at the K32 residue of the global regulator Fis in Salmonella enterica serovar Typhi (S. Typhi) and its influence on the pathogenicity of the bacteria. MATERIALS & METHODS Bacterial strains were cultured in media with sodium propionate supplementation. The propionylation status of Fis was determined through Western blot and mass spectrometry analyses. The DNA-binding capability of Fis was assessed using EMSA. The invasion and survival capacities of S. Typhi were examined using T84 cells and THP-1 macrophages. RESULTS Propionylation at the K32 site of Fis was found to down-regulate its DNA-binding ability, leading to a reduction in the invasion and survival of S. Typhi within host cells. The K32Q mutant exhibited significantly decreased invasion and survival capabilities compared to the wild-type and K32R mutant strains. CONCLUSION Propionylation of Fis at the K32 residue impacts the pathogenicity of S. Typhi, shedding light on the role of post-translational modifications in bacterial infections.
Collapse
Affiliation(s)
- Hao Tang
- Department of Clinical Laboratory, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ziyang Zhan
- Department of Biochemistry & Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiucheng Liu
- Department of Biochemistry & Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xinxiang Huang
- Department of Biochemistry & Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
2
|
Yuan S, Shen Y, Quan Y, Gao S, Zuo J, Jin W, Li R, Yi L, Wang Y, Wang Y. Molecular mechanism and application of emerging technologies in study of bacterial persisters. BMC Microbiol 2024; 24:480. [PMID: 39548389 PMCID: PMC11568608 DOI: 10.1186/s12866-024-03628-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024] Open
Abstract
Since the discovery of antibiotics, they have served as a potent weapon against bacterial infections; however, natural evolution has allowed bacteria to adapt and develop coping mechanisms, ultimately leading to the concerning escalation of multidrug resistance. Bacterial persisters are a subpopulation that can survive briefly under high concentrations of antibiotic treatment and resume growth after lethal stress. Importantly, bacterial persisters are thought to be a significant cause of ineffective antibiotic therapy and recurrent infections in clinical practice and are thought to contribute to the development of antibiotic resistance. Therefore, it is essential to elucidate the molecular mechanisms of persister formation and to develop precise medical strategies to combat persistent infections. However, there are many difficulties in studying persisters due to their small proportion in the microbiota and their non-heritable nature. In this review, we discuss the similarities and differences of antibiotic resistance, tolerance, persistence, and viable but non-culturable cells, summarize the molecular mechanisms that affect the formation of persisters, and outline the emerging technologies in the study of persisters.
Collapse
Affiliation(s)
- Shuo Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yamin Shen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yingying Quan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Shuji Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Jing Zuo
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Wenjie Jin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Rishun Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Li Yi
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
- College of Life Science, Luoyang Normal University, Luoyang, 471934, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China.
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China.
| |
Collapse
|
3
|
Niu H, Gu J, Zhang Y. Bacterial persisters: molecular mechanisms and therapeutic development. Signal Transduct Target Ther 2024; 9:174. [PMID: 39013893 PMCID: PMC11252167 DOI: 10.1038/s41392-024-01866-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 07/18/2024] Open
Abstract
Persisters refer to genetically drug susceptible quiescent (non-growing or slow growing) bacteria that survive in stress environments such as antibiotic exposure, acidic and starvation conditions. These cells can regrow after stress removal and remain susceptible to the same stress. Persisters are underlying the problems of treating chronic and persistent infections and relapse infections after treatment, drug resistance development, and biofilm infections, and pose significant challenges for effective treatments. Understanding the characteristics and the exact mechanisms of persister formation, especially the key molecules that affect the formation and survival of the persisters is critical to more effective treatment of chronic and persistent infections. Currently, genes related to persister formation and survival are being discovered and confirmed, but the mechanisms by which bacteria form persisters are very complex, and there are still many unanswered questions. This article comprehensively summarizes the historical background of bacterial persisters, details their complex characteristics and their relationship with antibiotic tolerant and resistant bacteria, systematically elucidates the interplay between various bacterial biological processes and the formation of persister cells, as well as consolidates the diverse anti-persister compounds and treatments. We hope to provide theoretical background for in-depth research on mechanisms of persisters and suggest new ideas for choosing strategies for more effective treatment of persistent infections.
Collapse
Affiliation(s)
- Hongxia Niu
- School of Basic Medical Science and Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Jiaying Gu
- School of Basic Medical Science and Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Ying Zhang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250022, Shandong, China.
| |
Collapse
|
4
|
Wang X, Yu D, Chen L. Antimicrobial resistance and mechanisms of epigenetic regulation. Front Cell Infect Microbiol 2023; 13:1199646. [PMID: 37389209 PMCID: PMC10306973 DOI: 10.3389/fcimb.2023.1199646] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/26/2023] [Indexed: 07/01/2023] Open
Abstract
The rampant use of antibiotics in animal husbandry, farming and clinical disease treatment has led to a significant issue with pathogen resistance worldwide over the past decades. The classical mechanisms of resistance typically investigate antimicrobial resistance resulting from natural resistance, mutation, gene transfer and other processes. However, the emergence and development of bacterial resistance cannot be fully explained from a genetic and biochemical standpoint. Evolution necessitates phenotypic variation, selection, and inheritance. There are indications that epigenetic modifications also play a role in antimicrobial resistance. This review will specifically focus on the effects of DNA modification, histone modification, rRNA methylation and the regulation of non-coding RNAs expression on antimicrobial resistance. In particular, we highlight critical work that how DNA methyltransferases and non-coding RNAs act as transcriptional regulators that allow bacteria to rapidly adapt to environmental changes and control their gene expressions to resist antibiotic stress. Additionally, it will delve into how Nucleolar-associated proteins in bacteria perform histone functions akin to eukaryotes. Epigenetics, a non-classical regulatory mechanism of bacterial resistance, may offer new avenues for antibiotic target selection and the development of novel antibiotics.
Collapse
Affiliation(s)
- Xinrui Wang
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- National Health Commission Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Donghong Yu
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- National Health Commission Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Lu Chen
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- National Health Commission Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| |
Collapse
|
5
|
PurN Is Involved in Antibiotic Tolerance and Virulence in Staphylococcus aureus. Antibiotics (Basel) 2022; 11:antibiotics11121702. [PMID: 36551359 PMCID: PMC9774800 DOI: 10.3390/antibiotics11121702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/13/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Staphylococcus aureus can cause chronic infections which are closely related to persister formation. Purine metabolism is involved in S. aureus persister formation, and purN, encoding phosphoribosylglycinamide formyltransferase, is an important gene in the purine metabolism process. In this study, we generated a ΔpurN mutant of the S. aureus Newman strain and assessed its roles in antibiotic tolerance and virulence. The ΔpurN in the late exponential phase had a significant defect in persistence to antibiotics. Complementation of the ΔpurN restored its tolerance to different antibiotics. PurN significantly affected virulence gene expression, hemolytic ability, and biofilm formation in S. aureus. Moreover, the LD50 (3.28 × 1010 CFU/mL) of the ΔpurN for BALB/c mice was significantly higher than that of the parental strain (2.81 × 109 CFU/mL). Transcriptome analysis revealed that 58 genes that were involved in purine metabolism, alanine, aspartate, glutamate metabolism, and 2-oxocarboxylic acid metabolism, etc., were downregulated, while 24 genes involved in ABC transporter and transferase activity were upregulated in ΔpurN vs. parental strain. Protein-protein interaction network showed that there was a close relationship between PurN and GltB, and SaeRS. The study demonstrated that PurN participates in the formation of the late exponential phase S. aureus persisters via GltB and regulates its virulence by activating the SaeRS two-component system.
Collapse
|
6
|
Abstract
Persisters represent a small subpopulation of cells that are tolerant of killing by antibiotics and are implicated in the recalcitrance of chronic infections to antibiotic therapy. One general theme has emerged regarding persisters formed by different bacterial species, namely, a state of relative dormancy characterized by diminished activity of antibiotic targets. Within this framework, a number of studies have linked persister formation to stochastic decreases in energy-generating components, leading to low ATP and target activity. In this study, we screen knockouts in the main global regulators of Escherichia coli for their effect on persisters. A knockout in integration host factor (IHF) had elevated ATP and a diminished level of persisters. This was accompanied by an overexpression of isocitrate dehydrogenase (Icd) and a downregulation of isocitrate lyase (AceA), two genes located at the bifurcation between the tricarboxylic acid (TCA) cycle and the glyoxylate bypass. Using a translational ihfA-mVenus fusion, we sort out rare bright cells, and this subpopulation is enriched in persisters. Our results suggest that noise in the expression of ihf produces rare cells with low Icd/high AceA, diverting substrates into the glyoxylate bypass, which decreases ATP, leading to antibiotic-tolerant persisters. We further examine noise in a simple model, the lac operon, and show that a knockout of the lacI repressor increases expression of the operon and decreases persister formation. Our results suggest that noise quenching by overexpression serves as a general approach to determine the nature of persister genes in a variety of bacterial species and conditions. IMPORTANCE Persisters are phenotypic variants that survive exposure to antibiotics through temporary dormancy. Mutants with increased levels of persisters have been identified in clinical isolates, and evidence suggests these cells contribute to chronic infections and antibiotic treatment failure. Understanding the underlying mechanism of persister formation and tolerance is important for developing therapeutic approaches to treat chronic infections. In this study, we examine a global regulator, IHF, that plays a role in persister formation. We find that noise in expression of IHF contributes to persister formation, likely by regulating the switch between the TCA cycle that efficiently produces energy and the glyoxylate bypass. We extend this study to a simple model lac operon and show that when grown on lactose as the sole carbon source, noise in its expression influences ATP levels and determines persister formation. This noise is quenched by overexpression of the lac operon, providing a simple approach to test the involvement of a gene in persister formation.
Collapse
|