1
|
Wu S, Zhong J, Lei Q, Song H, Chen SF, Wahla AQ, Bhatt K, Chen S. New roles for Bacillus thuringiensis in the removal of environmental pollutants. ENVIRONMENTAL RESEARCH 2023; 236:116699. [PMID: 37481057 DOI: 10.1016/j.envres.2023.116699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/04/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
For a long time, the well-known Gram-positive bacterium Bacillus thuringiensis (Bt) has been extensively studied and developed as a biological insecticide for Lepidoptera and Coleoptera pests due to its ability to secrete a large number of specific insecticidal proteins. In recent years, studies have found that Bt strains can also potentially biodegrade residual pollutants in the environment. Many researchers have isolated Bt strains from multiple sites polluted by exogenous compounds and characterized and identified their xenobiotic-degrading potential. Furthermore, its pathway for degradation was also investigated at molecular level, and a number of major genes/enzymes responsible for degradation have been explored. At present, a variety of xenobiotics involved in degradation in Bt have been reported, including inorganic pollutants (used in the field of heavy metal biosorption and recovery and precious metal recovery and regeneration), pesticides (chlorpyrifos, cypermethrin, 2,2-dichloropropionic acid, etc.), organic tin, petroleum and polycyclic aromatic hydrocarbons, reactive dyes (congo red, methyl orange, methyl blue, etc.), and ibuprofen, among others. In this paper, the biodegrading ability of Bt is reviewed according to the categories of related pollutants, so as to emphasize that Bt is a powerful agent for removing environmental pollutants.
Collapse
Affiliation(s)
- Siyi Wu
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Jianfeng Zhong
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Qiqi Lei
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Haoran Song
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Shao-Fang Chen
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Abdul Qadeer Wahla
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Punjab, Pakistan
| | - Kalpana Bhatt
- Department of Food Science, Purdue University, West Lafayette, IN, USA.
| | - Shaohua Chen
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Sathyan T, Jayakanthan M, Mohankumar S, Balasubramani V, Kokiladevi E, Ravikesavan R, Kennedy JS, Sathiah N. Genome profiling of an indigenous Bacillus thuringiensis isolate, T405 toxic against the fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Microb Pathog 2022; 173:105820. [PMID: 36270440 DOI: 10.1016/j.micpath.2022.105820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 10/02/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
In this study, we present the molecular and insecticidal characteristics of an indigenous Bt isolate T405 toxic against the maize fall armyworm (FAW), Spodoptera frugiperda. The presence of cry1, cry2 (cry2Aa & cry2Ab) and vip3A1 genes in T405 was confirmed. The SDS-PAGE gel analysis confirmed the occurrence of Cry and Vip proteins with molecular masses of 130, ∼88 and 65 kDa in T405. LC50 estimates of T405 and HD1 were 161.37 and 910.73 μg ml-1 for neonates whereas, 412.29 and 1014.95 μg ml-1 correspondingly for 2nd instar FAW larvae. Scanning Electron Microscopy depicted the existence of bipyramidal, spherical and cubic crystals in T405 spore suspension. The whole genome sequencing and assembly of T405 produced a total of 563 scaffolds with a genome size of 6,673,691 bp. The BLAST similarity search showed that 12 plasmids were distributed in this genome. Genome annotation revealed the presence of 6174 protein coding genes, 13 rRNA and 98 tRNA, in which 6126 genes were completely annotated for their functions through sequence similarity search, domains/motifs identification and gene ontology studies. Further analysis of these genes identified the presence of many insecticidal toxin protein coding genes viz., cry1Ac32, cry1Ab9, cry1Aa6, cry1Ac5, cry1Aa18, cry1Ab8, cry1Ab11, cry2Aa9, cry1Ia40, cry2Aa9, cry1Ia40, cry2Ab35, cyt, vip3Aa7 and tpp80Aa and several additional virulence assisted factors viz., immune inhibitor A, phospholipase C, sphingomyelinase, cell wall hydrolases, chitinase, hemolysin XhlA and seven urease subunit coding genes (ureA, ureB, ureC, ureD, ureE, ureF, ureG) in the annotated genome.
Collapse
Affiliation(s)
- Thiravidamani Sathyan
- Department of Agricultural Entomology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Mannu Jayakanthan
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Subbarayalu Mohankumar
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Venkatasamy Balasubramani
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Eswaran Kokiladevi
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Rajasekaran Ravikesavan
- Department of Millets, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - John Samuel Kennedy
- School of Post Graduate Studies, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Natarajan Sathiah
- Department of Agricultural Entomology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, 641003, India.
| |
Collapse
|
3
|
Liu H, Zheng J, Bo D, Yu Y, Ye W, Peng D, Sun M. BtToxin_Digger: a comprehensive and high-throughput pipeline for mining toxin protein genes from Bacillus thuringiensis. Bioinformatics 2021; 38:250-251. [PMID: 34244720 DOI: 10.1093/bioinformatics/btab506] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 06/18/2021] [Accepted: 07/07/2021] [Indexed: 02/03/2023] Open
Abstract
SUMMARY Bacillus thuringiensis (Bt) has been used as the most successful microbial pesticide for decades. Its toxin genes are used for the development of genetically modified crops against pests. We previously developed a web-based insecticidal gene mining tool BtToxin_scanner. It has been frequently used by many researchers worldwide. However, it can only handle the genome one by one online. To facilitate efficiently mining toxin genes from large-scale sequence data, we re-designed this tool with a new workflow and the novel bacterial pesticidal protein database. Here, we present BtToxin_Digger, a comprehensive and high-throughput Bt toxin mining tool. It can be used to predict Bt toxin genes from thousands of raw genome and metagenome data, and provides accurate results for downstream analysis and experiment testing. Moreover, it can also be used to mine other targeting genes from large-scale genome and metagenome data with the replacement of the database. AVAILABILITY AND IMPLEMENTATION The BtToxin_Digger codes and web services are freely available at https://github.com/BMBGenomics/BtToxin_Digger and https://bcam.hzau.edu.cn/BtToxin_Digger, respectively. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Hualin Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinshui Zheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Dexin Bo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yun Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Weixing Ye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Donghai Peng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Hegazy MI, Hegazy AM, Saad AM, Salem HM, El-Tahan AM, El-Saadony MT, Soliman SM, Taha AE, Alshehri MA, Ezzat Ahmed A, Swelum AA. ٍSome biologically active microorganisms have the potential to suppress mosquito larvae (Culex pipiens, Diptera: Culicidae). Saudi J Biol Sci 2021; 29:1998-2006. [PMID: 35531139 PMCID: PMC9072919 DOI: 10.1016/j.sjbs.2021.12.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/05/2021] [Accepted: 12/12/2021] [Indexed: 12/11/2022] Open
Abstract
Malaria is a disease caused by protozoan species of the genus Plasmodium. It is widespread and becoming a challenge in several African countries in the tropical and subtropical regions. In 2010, a report was published showing that over 1.2 million death cases were occurred globally due to malaria in just one year. The transmission of the disease from one person to another occurs via the bite of the Anopheles female. It is known that Plasmodium ovale, P. vivax, P. malariae, P. falciparum, and P. knowlesi are the highly infective malaria species. The problem of this disease is the absence of any effective medical treatment or vaccine, making the mosquito control is the only feasible way for disease prevention. Pesticides are currently the most widely used method for mosquito control, despite its well-known negative effects, including health hazards on human, the increasing insecticidal resistance, and the negative impact on the environment and beneficial organisms. Biological control (also called: biocontrol) of insects has been a promising method to overcome the negative effects of using chemical insecticides, as it depends on just using the natural enemies of pests to either minimize their populations or eradicate them. This article provides an overview of the recent and effective biological means to control malaria, such as bacteria, fungi, viruses, larvivorous fish, toxorhynchites larva and nematodes. In addition, the importance, advantages, and disadvantages of the biocontrol methods will be discussed in comparison with the traditionally used chemical methods of malaria control with special reference to nanotechnology as a novel method for insects’ control.
Collapse
Affiliation(s)
- Mohamed I. Hegazy
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Ahmad M. Hegazy
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Ahmed M. Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Heba M. Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
- Corresponding authors at: Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, PO Box 2460, Riyadh 11451, Saudi Arabia (A.A. Swelum).
| | - Amira M. El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, The City of Scientific. Research and Technological Applications, SRTA-City, Borg El Arab, Alexandria, Egypt
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Soliman M. Soliman
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| | - Ayman E. Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - Mohammed A. Alshehri
- Biology Department, College of Science, King Khalid University, 61413 Abha, Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, 61413 Abha, Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, South Valley University, 83523 Qena, Egypt
| | - Ayman A. Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, PO Box 2460, Riyadh 11451, Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Sharkia 44519, Egypt
- Corresponding authors at: Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, PO Box 2460, Riyadh 11451, Saudi Arabia (A.A. Swelum).
| |
Collapse
|
5
|
Molecular characterization of the chitinase genes of native Bacillus thuringiensis isolates and their antagonistic activity against three important phytopathogenic fungi. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00802-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|