1
|
Pecora D, Magni AM, Vicinanza S, Annunziata F, Princiotto S, Donzella S, Meroni G, Martino PA, Basilico N, Parapini S, Conti P, Borsari C, Tamborini L. Two-Step Flow Amidation of Natural Phenolic Acids as Antiradical and Antimicrobial Agents. JOURNAL OF NATURAL PRODUCTS 2025; 88:1153-1159. [PMID: 40160019 DOI: 10.1021/acs.jnatprod.5c00131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Natural hydroxycinnamic acid amides (HCAAs) and riparins offer significant health benefits. However, their extraction from natural sources is difficult, and traditional synthetic methods remain wasteful, raising the need for more efficient alternatives. In this work, a two-step chemo-enzymatic flow method for the efficient esterification and amidation of phenolic acids was developed and successfully applied to the synthesis of riparin derivatives and HCAAs. The flow Fischer esterification was optimized using vanillic acid as a model starting material and SiliaBond Tosic Acid (SCX-3) as an immobilized acid catalyst, achieving a quantitative yield in a short residence time. The following amidation step, catalyzed by immobilized Candida antarctica lipase B, was optimized in toluene, leading to the desired amides. The synthesized compounds were evaluated for their radical scavenging, antibacterial, and antileishmanial properties. Overall, this work disclosed a novel approach for the efficient synthesis of riparin derivatives and HCAAs with interesting biological properties.
Collapse
Affiliation(s)
- Desirée Pecora
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| | - Anna M Magni
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| | - Sara Vicinanza
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| | - Francesca Annunziata
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Salvatore Princiotto
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Silvia Donzella
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Gabriele Meroni
- Department of Biomedical, Surgical and Dental Sciences, One Health Unit, University of Milan, Via Pascal 36, 20133 Milan, Italy
| | - Piera A Martino
- Department of Biomedical, Surgical and Dental Sciences, One Health Unit, University of Milan, Via Pascal 36, 20133 Milan, Italy
| | - Nicoletta Basilico
- Department of Biomedical, Surgical and Dental Sciences, One Health Unit, University of Milan, Via Pascal 36, 20133 Milan, Italy
| | - Silvia Parapini
- Department of Biomedical Sciences of Health, University of Milan, Via Pascal 36, 20133 Milan, Italy
| | - Paola Conti
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| | - Chiara Borsari
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| | - Lucia Tamborini
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| |
Collapse
|
2
|
Queiroz da Silva ML, Ferreira de Sousa N, Dos Santos ATL, de Sousa GR, Fonseca VJA, Douglas Melo Coutinho H, Barbosa Filho JM, de Souza Ferrari J, Scotti MT, Ribeiro-Filho J, Martins de Lima JP, da Rocha JBT, Bezerra Morais-Braga MF. Inhibition of the morphological transition of Candida spp. by riparins I-IV. Fundam Clin Pharmacol 2024; 38:946-957. [PMID: 38738393 DOI: 10.1111/fcp.13007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 03/19/2024] [Accepted: 04/19/2024] [Indexed: 05/14/2024]
Abstract
Candida spp. is an opportunistic pathogen capable of causing superficial to invasive infections. Morphological transition is one of the main virulence factors of this genus and, therefore, is an important variable to be considered in pharmacological interventions. Riparins I, II, III, and IV are alkamide-type alkaloids extracted from the unripe fruit of Aniba riparia, whose remarkable pharmacological properties were previously demonstrated. This work aimed to evaluate in silico and in vitro the inhibitory effects of Riparins on the morphological transition of Candida albicans, Candida tropicalis, and Candida krusei. Molecular docking was applied to analyze the inhibitory effects of riparins against proteins such as N-acetylglucosamine, CYP-51, and protein kinase A (PKA) using the Ramachandran plot. The ligands were prepared by MarvinSketch and Spartan software version 14.0, and MolDock Score and Rerank Score were used to analyze the affinity of the compounds. In vitro analyses were performed by culturing the strains in humid chambers in the presence of riparins or fluconazole (FCZ). The morphology was observed through optical microscopy, and the size of the hyphae was determined using the ToupView software. In silico analysis demonstrated that all riparins are likely to interact with the molecular targets: GlcNAc (>50%), PKA (>60%), and CYP-51 (>70%). Accordingly, in vitro analysis showed that these compounds significantly inhibited the morphological transition of all Candida strains. In conclusion, this study demonstrated that riparins inhibit Candida morphological transition and, therefore, can be used to overcome the pathogenicity of this genus.
Collapse
Affiliation(s)
| | - Natália Ferreira de Sousa
- Laboratório de Quimioinformática, Departamento de Química, Universidade Federal da Paraíba (UFPB), São João do Cariri, Brazil
| | | | - Gabriela Ribeiro de Sousa
- Departamento de Ciências da Saúde, Universidade Federal da Paraiba (UFPB), São João do Cariri, Brazil
| | | | | | - José Maria Barbosa Filho
- Departamento de Ciências da Saúde, Universidade Federal da Paraiba (UFPB), São João do Cariri, Brazil
| | | | - Marcus Tullius Scotti
- Laboratório de Quimioinformática, Departamento de Química, Universidade Federal da Paraíba (UFPB), São João do Cariri, Brazil
| | | | | | - João Batista Teixeira da Rocha
- Departamento de Química Biológica, Universidade Regional do Cariri (URCA), Crato, Brazil
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil
| | | |
Collapse
|
3
|
Zhang L, Yang J, Xu X, Zhang J, Qiu Z, Ju Y, Luo B, Liu Y, Gou X, Sui J, Chen B, Wang Y, Tao T, He L, Yang T, Luo Y. Discovery and Optimization of Novel SaFabI Inhibitors as Specific Therapeutic Agents for MRSA Infection. J Med Chem 2024; 67:10096-10134. [PMID: 38845361 DOI: 10.1021/acs.jmedchem.4c00320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
As the rate-limiting enzyme in fatty acid biosynthesis, Staphylococcus aureus enoyl-acyl carrier protein reductase (SaFabI) emerges as a compelling target for combating methicillin-resistant S. aureus (MRSA) infections. Herein, compound 1, featuring a 4-(1H-benzo[d]imidazol-2-yl)pyrrolidin-2-one scaffold, was identified as a potent SaFabI inhibitor (IC50 = 976.8 nM) from an in-house library. Subsequent optimization yielded compound n31, with improved inhibitory efficacy on enzymatic activity (IC50 = 174.2 nM) and selective potency against S. aureus (MIC = 1-2 μg/mL). Mechanistically, n31 directly inhibited SaFabI in cellular contexts. Moreover, n31 exhibited favorable safety and pharmacokinetic profiles, and dose-dependently treated MRSA-induced skin infections, outperforming the approved drug, linezolid. The chiral separation of n31 resulted in (S)-n31, with superior activities (IC50 = 94.0 nM, MIC = 0.25-1 μg/mL) and in vivo therapeutic efficacy. In brief, our research proposes (S)-n31 as a promising candidate for SaFabI-targeted therapy, offering specific anti-S. aureus efficacy and potential for further development.
Collapse
Affiliation(s)
- Laiying Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiaxing Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xin Xu
- Editorial Office of Chinese Journal of Medical Genetics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Jiangnan Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiqiang Qiu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuan Ju
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Baozhu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yan Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xupeng Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Sui
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Baoyi Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanmei Wang
- Institute of traditional Chinese medicine, Sichuan College of Traditional Chinese Medicine, The Second Hospital of Traditional Chinese Medicine in Sichuan Province, Chengdu 610041, China
| | - Tao Tao
- Institute of traditional Chinese medicine, Sichuan College of Traditional Chinese Medicine, The Second Hospital of Traditional Chinese Medicine in Sichuan Province, Chengdu 610041, China
| | - Lei He
- Institute of traditional Chinese medicine, Sichuan College of Traditional Chinese Medicine, The Second Hospital of Traditional Chinese Medicine in Sichuan Province, Chengdu 610041, China
| | - Tao Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Figueiredo KA, Magalhães Costa RK, Rocha JA, Chavez Gutierrez SJ, Ramos RM, Muálem de Moraes Alves M, Aécio de Amorim Carvalho F, Menezes Carvalho AL, Lima FDCA. Antileishmanial activity of Riparin structural analogs of Aniba riparia: Biological evaluation, in silico Adme-Tox, and molecular docking. Exp Parasitol 2022; 236-237:108257. [DOI: 10.1016/j.exppara.2022.108257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 03/17/2022] [Accepted: 04/03/2022] [Indexed: 11/25/2022]
|