1
|
Maione A, Buonanno A, Galdiero M, de Alteriis E, Petrillo F, Reibaldi M, Guida M, Galdiero E. A Re-Purposing Strategy: Sub-Lethal Concentrations of an Eicosanoid Derived from the Omega-3-Polyunsaturated Fatty Acid Resolvin D1 Affect Dual Species Biofilms. Int J Mol Sci 2023; 24:12876. [PMID: 37629056 PMCID: PMC10454369 DOI: 10.3390/ijms241612876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
The fungal species Candida parapsilosis and the bacterial species Staphylococcus aureus may be responsible for hospital-acquired infections in patients undergoing invasive medical interventions or surgical procedures and often coinfect critically ill patients in complicating polymicrobial biofilms. The efficacy of the re-purposing therapy has recently been reported as an alternative to be used. PUFAs (polyunsaturated fatty acids) may be used alone or in combination with currently available traditional antimicrobials to prevent and manage various infections overcoming antimicrobial resistance. The objectives of the study were to evaluate the effects of Resolvin D1 (RvD1) as an antimicrobial on S. aureus and C. parapsilosis, as well as the activity against the mixed biofilm of the same two species. Microdilution assays and time-kill growth curves revealed bacterial and fungal inhibition at minimum concentration values between 5 and 10 μg mL-1. In single-species structures, an inhibition of 55% and 42% was reported for S. aureus and C. parapsilosis, respectively. Moreover, RvD1 demonstrated an eradication capacity of 60% and 80% for single- and mixed-species biofilms, respectively. In association with the inhibition activity, a downregulation of genes involved in biofilm formation as well as ROS accumulation was observed. Eradication capability was confirmed also on mature mixed biofilm grown on silicone platelets as shown by scanning electron microscopy (SEM). In conclusion, RvD1 was efficient against mono and polymicrobial biofilms in vitro, being a promising alternative for the treatment of mixed bacterial/fungal infections.
Collapse
Affiliation(s)
- Angela Maione
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy; (A.M.); (A.B.); (E.d.A.); (M.G.)
| | - Annalisa Buonanno
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy; (A.M.); (A.B.); (E.d.A.); (M.G.)
| | - Marilena Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy;
| | - Elisabetta de Alteriis
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy; (A.M.); (A.B.); (E.d.A.); (M.G.)
| | - Francesco Petrillo
- Department of Medical Sciences, Eye Clinic, Turin University, 10126 Turin, Italy; (F.P.); (M.R.)
| | - Michele Reibaldi
- Department of Medical Sciences, Eye Clinic, Turin University, 10126 Turin, Italy; (F.P.); (M.R.)
| | - Marco Guida
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy; (A.M.); (A.B.); (E.d.A.); (M.G.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
- Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), 80055 Portici, Italy
| | - Emilia Galdiero
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy; (A.M.); (A.B.); (E.d.A.); (M.G.)
- Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), 80055 Portici, Italy
| |
Collapse
|
2
|
Sushmitha TJ, Rajeev M, Kathirkaman V, Shivam S, Rao TS, Pandian SK. 3-Hydroxy coumarin demonstrates anti-biofilm and anti-hyphal efficacy against Candida albicans via inhibition of cell-adhesion, morphogenesis, and virulent genes regulation. Sci Rep 2023; 13:11687. [PMID: 37468600 DOI: 10.1038/s41598-023-37851-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/28/2023] [Indexed: 07/21/2023] Open
Abstract
Candida albicans, a common fungus of human flora, can become an opportunistic pathogen and causes invasive candidiasis in immunocompromised individuals. Biofilm formation is the prime cause of antibiotic resistance during C. albicans infections and treating biofilm-forming cells is challenging due to their intractable and persistent nature. The study intends to explore the therapeutic potential of naturally produced compounds by competitive marine bacteria residing in marine biofilms against C. albicans biofilm. To this end, 3-hydroxy coumarin (3HC), a compound identified from the cell-free culture supernatant of the marine bacterium Brevundimonas abyssalis, was found to exhibit anti-biofilm and anti-hyphal activity against both reference and clinical isolates of C. albicans. The compound demonstrated significant inhibitory effects on biofilms and impaired the yeast-to-hyphal transition, wrinkle, and filament morphology at the minimal biofilm inhibitory concentration (MBIC) of 250 µg mL-1. Intriguingly, quantitative PCR analysis of 3HC-treated C. albicans biofilm revealed significant downregulation of virulence genes (hst7, ume6, efg1, cph1, ras1, als1) associated with adhesion and morphogenesis. Moreover, 3HC displayed non-fungicidal and non-toxic characteristics against human erythrocytes and buccal cells. In conclusion, this study showed that marine biofilms are a hidden source of diverse therapeutic drugs, and 3HC could be a potent drug to treat C. albicans infections.
Collapse
Affiliation(s)
- T J Sushmitha
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630 003, India
| | - Meora Rajeev
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630 003, India
- Department of Biological Sciences and Bioengineering, Inha University, Inharo 100, Incheon, 22212, Republic of Korea
| | - Vellaisamy Kathirkaman
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630 003, India
| | - Singh Shivam
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630 003, India
| | - Toleti Subba Rao
- School of Arts and Sciences, Sai University, OMR, Paiyanur, Tamil Nadu, 603105, India
| | - Shunmugiah Karutha Pandian
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630 003, India.
| |
Collapse
|
3
|
Kasthuri T, Swetha TK, Bhaskar JP, Pandian SK. Rapid-killing efficacy substantiates the antiseptic property of the synergistic combination of carvacrol and nerol against nosocomial pathogens. Arch Microbiol 2022; 204:590. [PMID: 36053368 PMCID: PMC9438373 DOI: 10.1007/s00203-022-03197-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/08/2022] [Accepted: 08/18/2022] [Indexed: 12/05/2022]
Abstract
Globally, new classes of synthetic and natural antibiotics and antivirulents have continuously been validated for their potential broad-spectrum antagonistic activity with the aim of identifying an effective active molecule to prevent the spread of infectious agents in both food industry and medical field. In view of this, present study is aimed at evaluating the rapid killing efficacy of bioactive molecules Carvacrol (C) and Nerol (N) through British Standard European Norm 1276: phase2/step1 (EN1276) protocol. Active molecules C and N showed broad-spectrum antimicrobial activity against the test strains Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Enterococcus hirae at concentration range of 78.125, 625, 156.25 and 312.5 μg/mL, respectively, for C, and 625 μg/mL for N. Whereas, combinatorial approach showed efficient activity with four times reduced concentration of C and N at 78.125 and 156.25 µg/mL, respectively, against test strains. Further, EN1276 results proved the rapid killing efficacy of test strains in 1 min of contact time with significant (> 5 log) growth reduction at 100X concentration of actives. SEM analysis and reduced concentration of protease, lipids and carbohydrate contents of treated group biofilm components ascertained preformed biofilm disruption potential of C + N on polystyrene and nail surfaces. C + N at synergistic concentration exhibited no adverse effect on HaCaT cells at 78.125 µg/mL (C) + 156.25 µg/mL (N). Taken together, based on the observed experimental results, present study evidence the antiseptic/disinfectant ability of C + N and suggest that the combination can preferentially be used in foam-based hand wash formulations.
Collapse
Affiliation(s)
- Thirupathi Kasthuri
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | | | | | - Shunmugiah Karutha Pandian
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India.
| |
Collapse
|
4
|
Dardouri M, Aljnadi IM, Deuermeier J, Santos C, Costa F, Martin V, Fernandes MH, Gonçalves L, Bettencourt A, Gomes PS, Ribeiro IA. Bonding antimicrobial rhamnolipids onto medical grade PDMS: A strategy to overcome multispecies vascular catheter-related infections. Colloids Surf B Biointerfaces 2022; 217:112679. [DOI: 10.1016/j.colsurfb.2022.112679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/30/2022] [Accepted: 06/28/2022] [Indexed: 01/06/2023]
|
5
|
Pohl CH. Recent Advances and Opportunities in the Study of Candida albicans Polymicrobial Biofilms. Front Cell Infect Microbiol 2022; 12:836379. [PMID: 35252039 PMCID: PMC8894716 DOI: 10.3389/fcimb.2022.836379] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/26/2022] [Indexed: 01/11/2023] Open
Abstract
It is well known that the opportunistic pathogenic yeast, Candida albicans, can form polymicrobial biofilms with a variety of bacteria, both in vitro and in vivo, and that these polymicrobial biofilms can impact the course and management of disease. Although specific interactions are often described as either synergistic or antagonistic, this may be an oversimplification. Polymicrobial biofilms are complex two-way interacting communities, regulated by inter-domain (inter-kingdom) signaling and various molecular mechanisms. This review article will highlight advances over the last six years (2016-2021) regarding the unique biology of polymicrobial biofilms formed by C. albicans and bacteria, including regulation of their formation. In addition, some of the consequences of these interactions, such as the influence of co-existence on antimicrobial susceptibility and virulence, will be discussed. Since the aim of this knowledge is to inform possible alternative treatment options, recent studies on the discovery of novel anti-biofilm compounds will also be included. Throughout, an attempt will be made to identify ongoing challenges in this area.
Collapse
|