1
|
Gnanavelou R, Jayaraman M, Jeyaraman J, Girija KR. Computational design and structural insights into quinazoline-based lead molecules for targeting PARP10 in cancer therapy. J Mol Graph Model 2025; 137:109005. [PMID: 40101436 DOI: 10.1016/j.jmgm.2025.109005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/28/2025] [Accepted: 03/01/2025] [Indexed: 03/20/2025]
Abstract
Quinazoline scaffolds, a class of nitrogen-containing heterocyclic compounds, are considered a "privileged structure" in drug development due to their broad physiological activities and significant therapeutic potential. Many anti-breast cancer therapies are designed using this pharmacophore. Structural modifications such as halogen substitution and aromatic amino group insertion have been explored to improve the anticancer efficacy of quinazoline derivatives. Breast cancer continues to be the primary cause of cancer-related mortality among women, approximately 670,000 deaths globally in 2022, emphasizing the need for novel therapies. To combat multidrug resistance in breast cancer, new drug candidates targeting the Poly (ADP-ribose) polymerase (PARP) enzyme are being developed to improve chemotherapeutic efficacy and reduce toxicity. In this study, computational screening of 365 quinazoline derivatives was conducted to identify potential PARP inhibitors. Docking based screening identified three quinazoline scaffolds (RFAP77, RISA30, and RISAC) as top hits, demonstrating docking scores ranging from -8.41 to -9.31 kcal/mol and MM-GBSA binding free energy scores between -52.08 and -55.99 kcal/mol, compared to the reference approved inhibitor. ADMET analysis revealed favorable predicted drug-likeness profiles for the identified scaffolds. The structural stability of the docked PARP-ligand complexes was further investigated using molecular dynamics simulations (MDS). The computational simulations revealed significant conformational changes upon ligand binding, as evidenced by RMSD, RMSF, and hydrogen bond analyses. Essential dynamics analysis, including PCA-based FEL mapping, demonstrated energy minima profiles for all top docked PARP complexes. These computational findings highlight the potential of these scaffolds as promising candidates for further development as PARP inhibitors.
Collapse
Affiliation(s)
- Revathi Gnanavelou
- Department of Pharmaceutical Chemistry, College of Pharmacy, Mother Theresa Post Graduate and Research Institute of Health Sciences, (A Govt. of Puducherry Institution), Puducherry, 605 006, India
| | - Manikandan Jayaraman
- Structural Biology and Biocomputing Lab, Department of Bioinformatics, Alagappa University, Karaikudi, 630 004, Tamil Nadu, India
| | - Jeyakanthan Jeyaraman
- Structural Biology and Biocomputing Lab, Department of Bioinformatics, Alagappa University, Karaikudi, 630 004, Tamil Nadu, India
| | - Konda Reddy Girija
- Department of Pharmaceutical Chemistry, College of Pharmacy, Mother Theresa Post Graduate and Research Institute of Health Sciences, (A Govt. of Puducherry Institution), Puducherry, 605 006, India.
| |
Collapse
|
2
|
Eshak D, Arumugam M. Unveiling therapeutic biomarkers and druggable targets in ALS: An integrative microarray analysis, molecular docking, and structural dynamic studies. Comput Biol Chem 2024; 113:108211. [PMID: 39299050 DOI: 10.1016/j.compbiolchem.2024.108211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/02/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024]
Abstract
Amyotrophic lateral sclerosis (ALS), commonly known as Lou Gehrig's disease, is a debilitating neurodegenerative disorder characterized by the progressive degeneration of nerve cells in the brain and spinal cord. Despite extensive research, its precise etiology remains elusive, and early diagnosis is challenging due to the absence of specific tests. This study aimed to identify potential blood-based biomarkers for early ALS detection and monitoring using datasets from whole blood samples (GSE112680) and oligodendrocytes, astrocytes, and fibroblasts (GSE87385) obtained from the NCBI-GEO repository. Through bioinformatics analysis, including protein-protein interactions and molecular pathway analyses, we identified differentially expressed genes (DEGs) associated with ALS. Notably, ALS2, ADH7, ALDH8A1, ALDH3B1, ABHD2, ABHD17B, ABHD12, ABHD13, PGAM2, AURKB, ANAPC11, VAPA, UNC45B, and TNNT2 emerged as top-ranked DEGs, implicated in drug metabolism, protein depalmytilation, and the AKT/mTOR signaling pathways. Among these, AurKB established as a potential therapeutic biomarker with relevance to various neurological conditions. Consequently, AurKB was selected for identifying potential therapeutic molecules and utilized for in silico structural characterization studies. Exploration of the IMPATT database led to the discovery of a lead compound similar to Fostamatinib, currently used for AurKB. Initial molecular docking and MMGBSA-based binding energy analysis were followed by molecular dynamics simulation (MDS) and free energy landscape (FEL) analysis to validate the ligand's binding efficacy and understand dynamic processes within the biological system. The identified potential biomarkers and lead molecule provide novel insights into the correlation between blood cell transcripts and ALS pathology, paving the way for blood-based diagnostic tools for early ALS detection and ongoing disease monitoring.
Collapse
Affiliation(s)
- Deboral Eshak
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Mohanapriya Arumugam
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
3
|
Li Q, Maierheba K. Identification and role of differentially expressed genes/proteins between pulmonary tuberculosis patients and controls across lung tissues and blood samples. Immun Inflamm Dis 2024; 12:e1350. [PMID: 39023413 PMCID: PMC11256885 DOI: 10.1002/iid3.1350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/02/2024] [Accepted: 07/06/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Differentially expressed genes/proteins (DEGs/DEPs) play critical roles in pulmonary tuberculosis (PTB) diagnosis and treatment. However, there is a scarcity of reports on DEGs/DEPs in lung tissues and blood samples in PTB patients. OBJECTIVE We aim to identify the DEGs/DEPs in lung tissues and blood samples of PTB patients and investigate their roles in PTB. MATERIALS AND METHODS The lung granulomas and normal tissues were collected from PTB patients for proteomic and transcriptomic analyses. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses annotated the functions of DEGs/DEPs. The GSE107994 data set was downloaded to identify the DEGs/DEPs in peripheral blood. The common DEGs and DEPs were identified. A nomogram was established. Pearson correlation analysis was conducted. RESULTS Eighty-three DEGs/DEPs were identified. These DEGs/DEPs were mainly enriched in the movement of cell or subcellular components, regulation of cellular component biogenesis, and actin filament-based process as well as in the pathways of inositol phosphate metabolism, adherens junction, phosphatidylinositol signaling system, leukocyte transendothelial migration, regulation of actin cytoskeleton, and tight junction. There were eight common DEGs/DEPs (TYMP, LAP3, ADGRL2, SIL1, LMO7, SULF 1, ANXA3, and PACSIN3) between the lung tissues and blood samples. They were effective in predicting tuberculosis. Moreover, the activated dendritic cells, macrophages, monocytes, neutrophils, and regulatory T cells were significantly positively correlated with TYMP (r > .50), LAP3 (r > .50), SIL1 (r > .50), ANXA3 (r > .5), and PACSIN3 (r < .50), while negatively correlated with LMO7 (r < -0.50) (p < .05). ADGRL2 and SULF1 did not have a significant correlation (p > .05). LIMITATIONS The sample size was small. CONCLUSIONS Eight common DEGs/DEPs of lung tissues and blood samples were identified. They were correlated with immune cells and demonstrated predictive value for PTB. Our data may facilitate the diagnosis and treatment of PTB.
Collapse
Affiliation(s)
- Qifeng Li
- Xinjiang Hospital of Beijing Children's HospitalChildren's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Institute of PediatricsUrumqiChina
| | - Kuerbanjiang Maierheba
- Department of Nutrition and Food Hygiene, College of Public HealthXinjiang Medical UniversityUrumqiChina
| |
Collapse
|
4
|
Sun Z, He B, Yang Z, Huang Y, Duan Z, Yu C, Dan Z, Paek C, Chen P, Zhou J, Lei J, Wang F, Liu B, Yin L. Cost-Effective Whole Transcriptome Sequencing Landscape and Diagnostic Potential Biomarkers in Active Tuberculosis. ACS Infect Dis 2024; 10:2318-2332. [PMID: 38832694 DOI: 10.1021/acsinfecdis.4c00374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Tuberculosis (TB) is a prevalent and severe infectious disease that poses a significant threat to human health. However, it is frequently disregarded as there are not enough quick and accurate ways to diagnose tuberculosis. Here, we develop a strategy for tuberculosis detection to address the challenges, including an experimental strategy, namely, Double Adapter Directional Capture sequencing (DADCSeq), an easily operated and low-cost whole transcriptome sequencing method, and a computational method to identify hub differentially expressed genes as well as the diagnosis of TB based on whole transcriptome data using DADCSeq on peripheral blood mononuclear cells (PBMCs) from active TB and latent TB or healthy control. Applying our approach to create a robust and stable TB multi-mRNA risk probability model (TBMMRP) that can accurately distinguish active and latent TB patients, including active TB and healthy controls in clinical cohorts, this diagnostic biomarker was successfully validated by several independent cross-platform cohorts with favorable performance in differentiating active TB from latent TB or active TB from healthy controls and further demonstrated superior or similar diagnostic accuracy compared to previous diagnostic markers. Overall, we develop a low-cost and effective strategy for tuberculosis diagnosis; as the clinical cohort increases, we can expand to different disease kinds and learn new features through our disease diagnosis strategy.
Collapse
Affiliation(s)
- Zaiqiao Sun
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Boxiao He
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Zhifeng Yang
- Department of Chest Surgery, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province 430040, China
| | - Yi Huang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, China
| | - Zhaoyu Duan
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Chengyi Yu
- Department of Active and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
| | - Zhaokui Dan
- Clinical Medicine School of Hubei University of Science and Technology, Xianning, Hubei Province 437100, China
| | - Chonil Paek
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Peng Chen
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Jin Zhou
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Jun Lei
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Feng Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, China
| | - Bing Liu
- Department of Active and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, Hubei Province 100730, China
| | - Lei Yin
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province 430072, China
| |
Collapse
|
5
|
Arya R, Shakya H, Chaurasia R, Haque MA, Kim JJ. Exploring the Role of Extracellular Vesicles in the Pathogenesis of Tuberculosis. Genes (Basel) 2024; 15:434. [PMID: 38674369 PMCID: PMC11049626 DOI: 10.3390/genes15040434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Tuberculosis (TB) remains a significant global health concern, necessitating accurate diagnosis and treatment monitoring. Extracellular vesicles (EVs), including exosomes, play crucial roles in disease progression, with their associated genes serving as potential biomarkers and therapeutic targets. Leveraging publicly available RNA-Seq datasets of TB patients and healthy controls (HCs), to identify differentially expressed genes (DEGs) and their associated protein-protein interaction networks and immune cell profiles, the common EV-related DEGs were identified and validated in the GSE42830 and GSE40553 datasets. We have identified nine common EV-related DEGs (SERPINA1, TNFAIP6, MAPK14, STAT1, ITGA2B, VAMP5, CTSL, CEACAM1, and PLAUR) upregulated in TB patients. Immune cell infiltration analysis revealed significant differences between TB patients and HCs, highlighting increased proportions of various immune cells in TB patients. These DEGs are involved in crucial cellular processes and pathways related to exocytosis and immune response regulation. Notably, VAMP5 exhibited excellent diagnostic performance (AUC-0.993, sensitivity-93.8%, specificity-100%), with potential as a novel biomarker for TB. The EV-related genes can serve as novel potential biomarkers that can distinguish between TB and HCs. VAMP5, which functions in exosome biogenesis and showed significant upregulation in TB, can be targeted for therapeutic interventions and treatment outcomes.
Collapse
Affiliation(s)
- Rakesh Arya
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (R.A.); (M.A.H.)
| | - Hemlata Shakya
- Department of Biomedical Engineering, Shri G. S. Institute of Technology and Science, Indore 452003, Madhya Pradesh, India;
| | - Reetika Chaurasia
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Md Azizul Haque
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (R.A.); (M.A.H.)
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (R.A.); (M.A.H.)
| |
Collapse
|