1
|
Liu C, Li L, Dong J, Jin J, Xiang Y, Zhang J, Zhai Q, Huang Y, Sun B, Liao M, Sun M. Isolation, Characterization, and Comparative Analysis of Two Subtypes of Goose Astrovirus in Guangdong Province, China. Microorganisms 2025; 13:1037. [PMID: 40431208 PMCID: PMC12114045 DOI: 10.3390/microorganisms13051037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/22/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025] Open
Abstract
Since 2017, an infectious disease characterized by gosling gout and caused by goose astrovirus (GAstV) has affected geese in most major goose-producing regions of China. In this study, a total of 385 geese displaying gout symptoms were sampled from 12 cities in Guangdong Province, China, between 2019 and 2021. RT-PCR analysis revealed that all samples were positive for GAstV (385/385), with GAstV-II being the predominant subtype, accounting for 90.4% (348/385) of the cases. Co-infection with GAstV-I and GAstV-II was detected in 50.4% (194/385) of the samples. Additionally, different GAstV subtypes were successfully isolated using goose embryos, namely GDYJ-21-01 (GAstV-I) and GDZJ-21-01 (GAstV-II). Analysis of viral copy numbers in major pathological tissues following infection of goslings and goose embryos revealed that GDZJ strain exhibited broader tissue tropism than GDYJ strain. Compared to other tissues, GDYJ strain displayed tissue tropism exclusively in the cecal tonsils of goslings and the allantoic fluid of embryos. Structural prediction and alignment using AlphaFold 2.0 identified an α-helix in the S223-A226 region of the GDZJ VP34 protein, while a loop structure was observed in the Q235-Q237 region of the corresponding GDYJ VP34 protein. Furthermore, although the VP27 protein regions of both subtypes contained five β-sheet structures, the overall sequence similarity was relatively low, at 37.1%. This study broadens our understanding of the prevalence differences among GAstV subtypes and provides valuable insights into the development of reagents for preventing these viral infections.
Collapse
Affiliation(s)
- Chenggang Liu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou 510640, China; (C.L.); (L.L.); (J.D.); (Y.X.); (J.Z.); (Q.Z.); (Y.H.); (M.L.)
- Shanwei Academy of Agricultural Sciences, Shanwei 516699, China; (J.J.); (B.S.)
| | - Linlin Li
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou 510640, China; (C.L.); (L.L.); (J.D.); (Y.X.); (J.Z.); (Q.Z.); (Y.H.); (M.L.)
| | - Jiawen Dong
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou 510640, China; (C.L.); (L.L.); (J.D.); (Y.X.); (J.Z.); (Q.Z.); (Y.H.); (M.L.)
| | - Jin Jin
- Shanwei Academy of Agricultural Sciences, Shanwei 516699, China; (J.J.); (B.S.)
| | - Yong Xiang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou 510640, China; (C.L.); (L.L.); (J.D.); (Y.X.); (J.Z.); (Q.Z.); (Y.H.); (M.L.)
| | - Junqin Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou 510640, China; (C.L.); (L.L.); (J.D.); (Y.X.); (J.Z.); (Q.Z.); (Y.H.); (M.L.)
| | - Qi Zhai
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou 510640, China; (C.L.); (L.L.); (J.D.); (Y.X.); (J.Z.); (Q.Z.); (Y.H.); (M.L.)
| | - Yunzhen Huang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou 510640, China; (C.L.); (L.L.); (J.D.); (Y.X.); (J.Z.); (Q.Z.); (Y.H.); (M.L.)
| | - Binyi Sun
- Shanwei Academy of Agricultural Sciences, Shanwei 516699, China; (J.J.); (B.S.)
| | - Ming Liao
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou 510640, China; (C.L.); (L.L.); (J.D.); (Y.X.); (J.Z.); (Q.Z.); (Y.H.); (M.L.)
| | - Minhua Sun
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou 510640, China; (C.L.); (L.L.); (J.D.); (Y.X.); (J.Z.); (Q.Z.); (Y.H.); (M.L.)
| |
Collapse
|
2
|
Chen G, Yin L, Zhang H. Isolation and characterization of goose astrovirus genotype 1 causing enteritis in goslings from Sichuan Province, China. BMC Vet Res 2025; 21:259. [PMID: 40205381 PMCID: PMC11983725 DOI: 10.1186/s12917-025-04482-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/07/2025] [Indexed: 04/11/2025] Open
Abstract
Since 2017, goose astrovirus (GoAstV) has been widely prevalent in various provinces of China, causing economic losses in the goose industry, with outbreak mortality rates ranging from 10 to 60%. Notably, a goose farm in Sichuan Province has faced an outbreak of infectious disease in 1-3 weeks old goslings, with a mortality rate of approximately 30%. Viral metagenomic analysis of fecal samples identified Goose astrovirus genotype 1 (GoAstV-1), and PCR analysis confirmed the presence of GoAstV-1. Furthermore, we successfully isolated a GoAstV-C1 strain using goose embryos named AAstV/Goose/CHN/2023/C1 (GenBank No. PP108251), and its viral titer was calculated as 10^4.834 ELD50/0.5 mL using the Reed-Muench method. The genome size of GoAstV-C1 was about 7,261 nucleotides through amplifying with Sanger sequencing and assembling with SeqMan software. Phylogenetic analysis revealed that GoAstV-1 strains are classified into three major subtypes: A, B, and C, with the GoAstV-C1 strain identified as a unique variant within subtype B, characterized by distinct genetic divergence features. Experimental inoculation of one-day-old goslings with the virus resulted in a mortality rate of 5 out of 15 (p-value = 0.0421) and a significant reduction in weight gain compared to controls (p-value = 0.005). Pathological examination revealed that GoAstV-C1 infection caused severe damage to the liver, spleen, and kidneys. Interestingly, unlike most GoAstV, which leads to characteristic gout symptoms, our isolates GoAstV-C1 caused obvious intestinal damage characterized by necrosis, inflammatory infiltration, and crypt architectural disruption. We indicated that GoAstV-C1 displays a unique intestinal tropism rather than characteristic gout symptoms and elucidated genomic features and evolutionary relationships of GoAstV strains. These findings help advance our knowledge of the epidemiology and pathogenicity of GoAstV-1, and the predicted structure of capsid protein could serve as a potential target for designing novel antiviral drugs or vaccines against GoAstV-1.
Collapse
Affiliation(s)
- Guo Chen
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, PR China
- Key Laboratory of Veterinary Medicine of Universities in Sichuan, Chengdu, 610041, PR China
| | - Lingdan Yin
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, PR China
- Key Laboratory of Veterinary Medicine of Universities in Sichuan, Chengdu, 610041, PR China
| | - Huanrong Zhang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, PR China.
- Key Laboratory of Veterinary Medicine of Universities in Sichuan, Chengdu, 610041, PR China.
| |
Collapse
|
3
|
Xiang Y, Li L, Huang Y, Zhang J, Dong J, Zhai Q, Sun M, Liao M. Cellular vimentin interacts with VP70 protein of goose astrovirus genotype 2 and acts as a structural organizer to facilitate viral replication. Poult Sci 2024; 103:104146. [PMID: 39128391 PMCID: PMC11367133 DOI: 10.1016/j.psj.2024.104146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/28/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024] Open
Abstract
The fatal gouty disease caused by goose astrovirus genotype 2 (GAstV-2) still seriously endangers the goose industry in China, causing great economic losses. However, research on its infection mechanism has progressed relatively slowly. VP70 is the structural protein of GAstV-2 and is closely related to virus invasion and replication. To better understand the role of VP70 during GAstV-2 infection, we used immunoprecipitation and mass spectrometry to identify host proteins that interact with VP70. Here, we report that cellular vimentin (VIM) is a host binding partner of VP70. Site-directed mutagenesis showed that amino acid residues 399 to 413 of VP70 interacted with VIM. Using reverse genetics, we found that VP70 mutation disrupts the interaction of VP70 with VIM, which is essential for viral replication. Overexpression of VIM significantly promoted GAstV-2 replication, while knockdown of VIM significantly inhibited GAstV-2 replication. Laser confocal microscopy showed that VP70 protein expression induced the rearrangement of VIM, gradually aggregating from the original uniform grid to the side of the nucleus, and aggregated the originally dispersed GAstV-2 RNA in VIM. This rearrangement was associated with increased VIM phosphorylation caused by GAstV-2. Meanwhile, blocking VIM rearrangement with acrylamide substantially inhibited viral replication. These results indicate that VIM interacts with VP70 and positively regulates GAstV-2 replication, and VIM-VP70 interaction and an intact VIM network are needed for GAstV-2 replication. This study provides a theoretical basis and novel perspective for the further characterization of the pathogenic mechanism of GAstV-2-induced gouty disease in goslings.
Collapse
Affiliation(s)
- Yong Xiang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs; Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, Guangdong Province, PR China
| | - Linlin Li
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs; Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, Guangdong Province, PR China
| | - Yunzhen Huang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs; Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, Guangdong Province, PR China
| | - Junqin Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs; Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, Guangdong Province, PR China
| | - Jiawen Dong
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs; Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, Guangdong Province, PR China
| | - Qi Zhai
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs; Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, Guangdong Province, PR China
| | - Minhua Sun
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs; Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, Guangdong Province, PR China
| | - Ming Liao
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs; Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, Guangdong Province, PR China; College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, PR China.
| |
Collapse
|
4
|
Xiang Y, Chen M, Sun M, Dong J, Zhang J, Huang Y, Zhai Q, Liao M, Li L. Isolation, identification, and epidemiological characteristics of goose astrovirus causing acute gout in Guangdong province, China. Poult Sci 2024; 103:104143. [PMID: 39128392 PMCID: PMC11367137 DOI: 10.1016/j.psj.2024.104143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/24/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024] Open
Abstract
Goose astrovirus (GAstV) has been widespread in China since 2016, causing significant growth inhibition and gout symptoms in goslings and leading to substantial economic losses in the goose industry. To better understand the epidemiological characteristics of GAstV in Guangdong Province, 682 samples were collected from geese with suspected GAstV infection across different regions of Guangdong Province from January 2022 to January 2024. Virus isolation, identification, and genetic evolution analysis were performed. The results showed that all samples were GAstV positive, with 52.64% co-infected with GAstV-1 and GAstV-2, and 42.38% positive for GAstV-2 alone, indicating that GAstV-2 remains the most prevalent subtype. Additionally, three GAstV isolates were identified using molecular detection, immunofluorescence, and transmission electron microscopy on LMH cells or goose embryos. Compared with GDYJ2304 and other reported GAstV-2 strains, the ORF2 region of the GDYJ2210 isolates lacked 3 bases, and the replication ability of GDYJ2210 was significantly higher than that of GDYJ2304. Whole genome sequence alignment and genetic evolution analysis revealed that the GDFS2209 isolate was located in the GAstV-1 branch, with a sequence similarity of 89.70 to 99.00% to GAstV-1 reference strains. The GDYJ2210 and GDYJ2304 isolates were located in the GAstV-2 branch, showing a sequence similarity of 96.80 to 98.90% to GAstV-2 reference strains. These results demonstrated that the GAstV isolates were highly similar to each other despite being prevalent in 5 different regions of Guangdong Province. These findings enhance the understanding of the genetic diversity and evolution of GAstV and may facilitate the development of effective preventive strategies.
Collapse
Affiliation(s)
- Yong Xiang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs; Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, Guangdong Province, PR China
| | - Meiting Chen
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs; Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, Guangdong Province, PR China; School of Life Science and Engineering, Foshan University, Foshan, Guangdong Province, PR China
| | - Minhua Sun
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs; Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, Guangdong Province, PR China
| | - Jiawen Dong
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs; Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, Guangdong Province, PR China
| | - Junqin Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs; Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, Guangdong Province, PR China
| | - Yunzhen Huang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs; Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, Guangdong Province, PR China
| | - Qi Zhai
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs; Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, Guangdong Province, PR China
| | - Ming Liao
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs; Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, Guangdong Province, PR China; College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, PR China
| | - Linlin Li
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs; Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, Guangdong Province, PR China.
| |
Collapse
|
5
|
Li R, Zhai S, Gao S, Yang X, Zhao J, Zhang X, Wang Z. Goose IFIT5 positively regulates goose astrovirus replication in GEF cells. Poult Sci 2024; 103:103930. [PMID: 38908126 PMCID: PMC11253660 DOI: 10.1016/j.psj.2024.103930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/21/2024] [Accepted: 05/29/2024] [Indexed: 06/24/2024] Open
Abstract
Interferon-induced protein with tetratricopeptide repeats (IFITs), a family of proteins strongly induced by type I interferon (IFN-I), are deeply involved in many cellular and viral processes. IFIT5, the sole protein in this family found in birds, also plays a crucial role in regulating virus infection. In this study, goose IFIT5 (gIFIT5) was first cloned from peripheral blood lymphocyte (PBL) and phylogenetic analysis showed that it was highly homologous with duck IFIT5 (dIFIT5), sharing 94.6% identity in amino acid sequence. Subsequently, the expression kinetics of gIFIT5 during goose astrovirus (GAstV) infection and the regulatory effect of gIFIT5 on GAstV proliferation were evaluated. Results showed that the mRNA and protein expression level of gIFIT5 was greatly induced by GAstV infection, especially at 12 hpi. Importantly, gIFIT5 could conversely promote GAstV replication in GEF cells. Virus titers in gIFIT5 overexpression group were significantly higher than those in control group at 12 and 24 hpi. Western blot and quantitative real-time PCR (qRT-PCR) further demonstrated that the production of viral cap protein was significantly facilitated in gIFIT5-transfected group. Collectively, GAstV facilitates self-replication via promoting gIFIT5 expression.
Collapse
Affiliation(s)
- Ruixue Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Saimin Zhai
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Shenyan Gao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Xia Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, China
| | - Jun Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaozhan Zhang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Zeng Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China.
| |
Collapse
|
6
|
Guo Z, Zhu M, Li X, Xu H, Lv Y. Primary goose kidney tubular epithelial cells for goose astrovirus genotype 2 infection: establishment and RNA sequencing analysis. Poult Sci 2024; 103:103774. [PMID: 38669820 PMCID: PMC11063644 DOI: 10.1016/j.psj.2024.103774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/03/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Goose astrovirus genotype 2 (GAstV-2) mainly causes gout in goslings; therefore, it is a major pathogen threatening to goose flocks. However, the mechanisms underlying host-GAstV-2 interactions remain unclear because host cells suitable for GAstV-2 replication have been unavailable. We previously noted that GAstV-2 is primarily located in goose renal epithelial cells, where it causes kidney damage. Therefore, here, we derived goose primary renal tubular epithelial (RTE) cells (GRTE cells) from the kidneys of goose embryos after collagenase I digestion. After culture in Dulbecco's modified Eagle medium/Nutrient mixture F-12 with 10% fetal bovine serum (FBS), the isolated cells had polygonal with roadstone-like morphology; they were identified to be epithelial cells based on the presence of cytokeratin 18 expression detected through immunofluorescence assay (IFA). GAstV-2 infection in GRTE cells led to no obvious cytopathic effects; the maximum amounts of infectious virions were observed 48 h post infection through IFA and quantitative PCR. Next, RNA-seq was performed to identify and map post-GAstV-2 infection differentially expressed genes. The downregulated pathways were mainly related to metabolism, including tryptophan metabolism, drug metabolism by cytochrome P450, xenobiotic metabolism by cytochrome P450, retinol metabolism, butanoate metabolism, starch and sucrose metabolism, ascorbate and aldarate metabolism, and drug metabolism by other enzymes and peroxisome. In contrast, the upregulated pathways were mostly related to the host cell defense and proliferation, including extracellular matrix-receptor interaction, complement and coagulation cascades, phagosome, PI3K-Akt signaling pathway, human T-lymphotropic virus 1 infection, lysosome, and tumor necrosis factor signaling pathway. In conclusion, we developed a GRTE cell line for GAstV-2 replication and analyzed the potential host-GAstV-2 interactions through RNA-seq; our results may aid in further investigating the pathogenic mechanisms underlying GAstV-2 infection and provide strategies for its prevention and control.
Collapse
Affiliation(s)
- Zixuan Guo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ming Zhu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinyang Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haoran Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yingjun Lv
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
7
|
Zhu M, Guo Z, Xu H, Li X, Chen H, Cao R, Lv Y. Aminoguanidine alleviates gout in goslings experimentally infected with goose astrovirus-2 by reducing kidney lesions. Poult Sci 2024; 103:103484. [PMID: 38306918 PMCID: PMC10847692 DOI: 10.1016/j.psj.2024.103484] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/04/2024] Open
Abstract
Goose astrovirus (GAstV)-2, a novel pathogen identified in 2018, mainly causes visceral gout in goslings, leading to approximately 50% mortality. At present, no commercial veterinary products are available to prevent and treat the disease. Our previous studies showed that nitric oxide (NO) and inducible NO synthase (iNOS) were markedly higher in the kidney and spleen of goslings infected with GAstV-2, but their effects during GAstV-2 infection remain unclear. In the present study, goslings were intraperitoneally injected with aminoguanidine (AG)-an iNOS inhibitor-to examine the role of NO during GAstV-2 infection. AG significantly decreased the serum NO concentration and iNOS mRNA expression in the kidney. Moreover, AG reduced the mortality, serum uric acid and creatinine content, and urate deposition in visceral organs and joints. Histopathological analysis demonstrated that AG reduced renal tubular cell necrosis, inflammatory cell infiltration, glycogen deposition in glomerular mesangium, and interstitial fibrosis, suggesting alleviation of kidney lesions. Furthermore, AG decreased the expression of renal injury markers such as KIM-1 and desmin; inflammatory cytokine-related genes such as IL-1β, IL-8, and MMP-9; and autophagy-related genes and proteins such as LC3II, ATG5, and Beclin1. However, quantitative real-time PCR and immunohistochemistry showed that treatment with AG did not affect the kidney and liver viral load. These findings suggest that AG decreases the mortality rate and kidney lesions in goslings infected with GAstV-2 through mechanisms associated with autophagy and inhibition of inflammatory cytokine production in the kidney but not with GAstV-2 replication.
Collapse
Affiliation(s)
- Ming Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zixuan Guo
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haoran Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinyang Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongbo Chen
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis of Fujian Province University, College of Life Science, Longyan University, Longyan, 364012, Fujian, China
| | - Ruibing Cao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yingjun Lv
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|