1
|
Luo F, Gwak H, Park AR, Nguyen VT, Kim JC. Biocontrol potential of natamycin-producing Streptomyces lydicus JCK-6019 against soil-borne fungal diseases of cucumber and characterization of its biocontrol mechanism. PEST MANAGEMENT SCIENCE 2025; 81:1971-1987. [PMID: 39655403 DOI: 10.1002/ps.8596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/23/2024] [Accepted: 11/26/2024] [Indexed: 03/15/2025]
Abstract
BACKGROUND Fusarium oxysporum f. sp. cucumerinum and Rhizoctonia solani AG-4 are the two most important fungal pathogens causing soil-borne fungal diseases of cucumber; they are difficult to control and cause serious economic losses. Given the detrimental effects of the indiscriminate use of chemical fungicides, biocontrol emerges as an efficient and ecofriendly alternative for managing soil-borne fungal diseases. RESULTS Streptomyces lydicus JCK-6019 (hereafter, JCK-6019) was isolated from rhizosphere soil. Its fermentation filtrate and volatile organic compounds exhibited broad-spectrum antifungal activity against various phytopathogenic fungi and oomycetes. JCK-6019 produced natamycin as an agar-diffusible antifungal metabolite. It also produced indole-3-acetic acid and various hydrolytic enzymes. In vivo experiments revealed that a ten-fold-diluted optimized JCK-6019 fermentation broth exhibited 100% control efficiency against cucumber damping-off disease and 62.5% control efficiency against cucumber Fusarium wilt disease. Pretreatment of cucumber seedlings with 1000-fold-diluted optimized JCK-6019 fermentation broth resulted in 68.18% and 23.91% disease control values against cucumber damping-off and Fusarium wilt disease, respectively. Moreover, peroxidase activity in cucumbers after 1 day of treatment was 1.5-fold higher than that in the control. Similarly, polyphenol oxidase activity in cucumbers after 3 days of treatment was 2.34-fold higher than that in the control, indicating that JCK-6019 can induce plant resistance. CONCLUSION The natamycin-producing strain JCK-6019 could effectively suppress the development of cucumber Fusarium wilt and damping-off disease by inducing plant resistance and producing antifungal metabolites, including natamycin and volatile organic compounds. Thus, JCK-6019 possesses high potential for application in the development of biocontrol agents against soil-borne fungal diseases of cucumber. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Feng Luo
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
| | - Hanna Gwak
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
| | - Ae Ran Park
- Plant Healthcare Research Institute, JAN153 Biotech Incorporated, Gwangju, Republic of Korea
| | - Van Thi Nguyen
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
| | - Jin-Cheol Kim
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
- Plant Healthcare Research Institute, JAN153 Biotech Incorporated, Gwangju, Republic of Korea
| |
Collapse
|
2
|
Shi B, Yuan H, Wang Z, Fan Y, Qin G, Xiaoqian L, Wang L, Tu H, Hou H. Biocontrol activity and potential mechanism of volatile organic compounds from Aspergillus niger strain La2 against pear Valsa canker. PEST MANAGEMENT SCIENCE 2024; 80:3010-3021. [PMID: 38318950 DOI: 10.1002/ps.8009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/05/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Valsa canker caused by Valsa pyri is one of the most destructive diseases of pear, leading to severe yield and economic losses. Volatile organic compounds (VOCs) from endophytes have important roles in the regulation of plant disease. In this study, we investigated the biocontrol activity of the endophytic fungus Aspergillus niger strain La2 and its antagonistic VOCs against pear Valsa canker. RESULTS Strain La2 exhibited an obvious inhibitory effect against V. pyri. A colonization assay suggested that strain La2 could complete its life cycle on pear twigs. The symptoms of pear Valsa canker were weakened on detached pear twigs after treatment with strain La2. In addition, VOCs from strain La2 also significantly suppressed mycelial growth in V. pyri. Based on the results of headspace solid-phase microextraction/gas chromatography-mass spectrometry analysis, six possible VOCs produced by strain La2 were detected, of which 2,4-di-tert-butylphenol and 4-methyl-1-pentanol were the main antagonistic VOCs in terms of their effect on pear Valsa canker in vitro and in vivo. Further results showed that 4-methyl-1-pentanol could destroy the V. pyri hyphal structure and cell membrane integrity. Importantly, the activities of pear defense-related enzymes (polyphenol oxidase, phenylalanine ammonia lyase and superoxide dismutase) were enhanced after 4-methyl-1-pentanol treatment in pear twigs, suggesting that 4-methyl-1-pentanol might induce a plant disease resistance response. CONCLUSION Aspergillus niger strain La2 and its VOCs 2,4-di-tert-butylphenol and 4-methyl-1-pentanol have potential as novel biocontrol agents of pear Valsa canker. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bingke Shi
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Hongbo Yuan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Zhuoni Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Yangyang Fan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Genhong Qin
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Li Xiaoqian
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Li Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Hongtao Tu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, China
| | - Hui Hou
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
3
|
Nazari M, Yaghoubian I, Smith DL. The stimulatory effect of Thuricin 17, a PGPR-produced bacteriocin, on canola ( Brassica, napus L.) germination and vegetative growth under stressful temperatures. FRONTIERS IN PLANT SCIENCE 2022; 13:1079180. [PMID: 36618613 PMCID: PMC9816380 DOI: 10.3389/fpls.2022.1079180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Exposure to unfavorable conditions is becoming more frequent for plants due to climate change, posing a threat to global food security. Stressful temperature, as a major environmental factor, adversely affects plant growth and development, and consequently agricultural production. Hence, development of sustainable approaches to assist plants in dealing with environmental challenges is of great importance. Compatible plant-microbe interactions and signal molecules produced within these interactions, such as bacteriocins, could be promising approaches to managing the impacts of abiotic stresses on crops. Although the use of bacteriocins in food preservation is widespread, only a small number of studies have examined their potential in agriculture. Therefore, we studied the effect of three concentrations of Thuricin17 (Th17), a plant growth-promoting rhizobacterial signal molecule produced by Bacillus thuringiensis, on germination and vegetative growth of canola (Brassica napus L.) under stressful temperatures. Canola responded positively to treatment with the bacterial signal molecule under stressful temperatures. Treatment with 10 -9 M Th17 (Thu2) was found to significantly enhance germination rate, seed vigor index, radical and shoot length and seedling fresh weight under low temperature, and this treatment reduced germination time which would be an asset for higher latitude, short growing season climates. Likewise, Thu2 was able to alleviate the adverse effects of high temperature on germination and seed vigor. Regarding vegetative growth, interestingly, moderate high temperature with the assistance of the compound caused more growth and development than the control conditions. Conversely, low temperature negatively affected plant growth, and Th17 did not help overcome this effect. Specifically, the application of 10 -9 (Thu2) and 10 -11 M (Thu3) Th17 had a stimulatory effect on height, leaf area and biomass accumulation under above-optimal conditions, which could be attributed to modifications of below-ground structures, including root length, root surface, root volume and root diameter, as well as photosynthetic rate. However, no significant effects were observed under optimal conditions for almost all measured variables. Therefore, the signal compound tends to have a stimulatory impact at stressful temperatures but not under optimal conditions. Hence, supplementation with Th17 would have the potential as a plant growth promoter under stressed circumstances.
Collapse
|
4
|
Shah A, Subramanian S, Smith DL. Flavonoids and Devosia sp SL43 cell-free supernatant increase early plant growth under salt stress and optimal growth conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:1030985. [PMID: 36438103 PMCID: PMC9690568 DOI: 10.3389/fpls.2022.1030985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Salt stress is a major threat to modern agriculture, significantly affecting plant growth and yield, and causing substantial economic losses. At this crucial time of increasing climate change conditions, soil salinity will continue to develop and become an even more serious challenge to crop agriculture. Hence, there is a pressing need for sustainable techniques in agricultural production that could meet the dual challenges of crop productivity and environmental instability. The use of biostimulants in agricultural production has greatly influenced plant health and global food production. In particular, the application of bioactive materials produced by beneficial microbes is becoming a common practice in agriculture and provides numerous benefits to plant growth and resistance to stressful conditions. In this research two biostimulants; a type of plant secondary metabolite (flavonoids) and a microbe-based material (CFS: Cell-Free Supernatant) containing active compounds secreted by a novel bacterial strain isolated from Amphecarpaea bracteata root nodules (Devosia sp - SL43), have been utilized to improve the growth and stress resistance of two major oil seed crops; canola and soybean, under optimal and salt stress conditions. Our findings suggested significant improvements in crop growth of canola and soybean following the application of both biostimulants. Under optimal growth conditions, soybean growth was significantly affected by foliar spray of flavonoids with increases in shoot fresh and dry weight, and leaf area, by 91, 99.5, and 73%, respectively. However, soybean growth was unaffected by flavonoids under salt stress. In contrast, CFS with a meaningful capacity to mitigate the negative effects of salinity stress improved soybean shoot fresh biomass, dry biomass, and leaf area by 128, 163 and 194%, respectively, under salt stress conditions. Canola was less responsive to both biostimulants, except for canola root variables which were substantially improved by flavonoid spray. Since this was the first assessment of these materials as foliar sprays, we strongly encourage further experimentation to confirm the findings reported here and to determine the full range of applicability of each of these potential technologies.
Collapse
|
5
|
Yang M, Wei Q, Shi L, Wei Z, Lv Z, Asim N, Zhang K, Ge B. Wuyiencin produced by Streptomyces albulus CK-15 displays biocontrol activities against cucumber powdery mildew. J Appl Microbiol 2021; 131:2957-2970. [PMID: 34060684 DOI: 10.1111/jam.15168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/22/2021] [Accepted: 05/27/2021] [Indexed: 11/26/2022]
Abstract
AIMS Wuyiencin is a nucleoside antibiotic produced by Streptomyces albulus CK-15. The aim of this study was to determine whether wuyiencin can be used, as a suitable alternative to chemical pesticides, to protect cucumbers (Cucumis sativus L.) from powdery mildew caused by Sphaerotheca fuliginea. Further, the mechanisms underlying the control of cucumber powdery mildew by S. albulus CK-15 were preliminarily elucidated. METHODS AND RESULTS Wuyiencin solutions of different concentrations were used to treat infected cucumber plants under greenhouse conditions. The results indicated that wuyiencin could significantly reduce powdery mildew disease incidence, with a maximum prevention efficacy of 94·38%. Further, scanning electron micrographs and enzyme assays showed that wuyiencin inhibited S. fuliginea spore growth and elicited the activity of plant systemic resistance-related enzymes. Additionally, real-time quantitative reverse transcription PCR suggested that wuyiencin can activate a salicylic acid-dependent plant defence response. CONCLUSIONS Wuyiencin produced by S. albulus CK-15 possessed antifungal effects and was able to mitigate cucumber powdery mildew disease via antagonistic action. Wuyiencin also induced defence responses in the plants. SIGNIFICANCE AND IMPACT OF THE STUDY These results reinforce the biotechnological potential of wuyiencin as both an antagonistic agent and an inducer of plant systemic resistance.
Collapse
Affiliation(s)
- M Yang
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Q Wei
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - L Shi
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Z Wei
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Z Lv
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - N Asim
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - K Zhang
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - B Ge
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
6
|
Subramanian S, Souleimanov A, Smith DL. Thuricin17 Production and Proteome Differences in Bacillus thuringiensis NEB17 Cell-Free Supernatant Under NaCl Stress. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.630628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bacillus thuringiensis strain NEB17, produces a bacteriocin, thuricin17 (Th17) and is known to promote the growth more effectively under salt stress conditions. In this study, bacterial salt stress tolerance screening and the possible changes in its secretome under two levels of NaCl stress was evaluated. The salt tolerance screening suggested that the bacterium is able to grow and survive in up to 900 mM NaCl. Thuricin17 production at salt levels from 100 to 500 mM NaCl was quantified using High Performance Liquid Chromatography (HPLC). Salt stress adversely affected the production of Th17 at levels as low as 100 mM NaCl; and the production stopped at 500 mM NaCl, despite the bacterium thriving at these salt levels. Hence, a comparative proteomic study was conducted on the supernatant of the bacterium after 42 h of growth, when Th17 production peaked in the control culture, as determined by Liquid Chromatography - Tandem Mass Spectrometry (LC-MS/MS). Optimal (salt free) bacterial culture served as a control and 200 and 500 mM NaCl as stress conditions. As salt levels increased, the major enzyme classes, transferases, hydrolases, lyases, and ligases showed increased abundance as compared to the control, mostly related to molecular function mechanisms. Some of the notable up-regulated proteins in 500 mM NaCl stress conditions included an S-layer protein, chitin binding domain 3 protein, enterotoxins, phosphopentomutase, glucose 6-phosphate isomerase and bacterial translation initiation factor; while notable down-regulated proteins included hemolytic enterotoxin, phospholipase, sphingomyelinase C, cold shock DNA-binding protein family and alcohol dehydrogenase. These results indicate that, as the salt stress levels increase, the bacterium probably shuts down the production of Th17 and regulates its molecular functional mechanisms to overcome stress. This study indicates that end users have the option of using Th17 as a biostimulant or the live bacterial inoculum depending on the soil salt characteristics, for crop production. The mass spectrometry proteomics data have been deposited to Mass Spectrometry Interactive Virtual Environment (MassIVE) with the dataset identifier PXD024069, and doi: 10.25345/C5RB8T.
Collapse
|
7
|
Naamala J, Smith DL. Microbial Derived Compounds, a Step Toward Enhancing Microbial Inoculants Technology for Sustainable Agriculture. Front Microbiol 2021; 12:634807. [PMID: 33679668 PMCID: PMC7930237 DOI: 10.3389/fmicb.2021.634807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/29/2021] [Indexed: 11/16/2022] Open
Abstract
Sustainable agriculture remains a focus for many researchers, in an effort to minimize environmental degradation and climate change. The use of plant growth promoting microorganisms (PGPM) is a hopeful approach for enhancing plant growth and yield. However, the technology faces a number of challenges, especially inconsistencies in the field. The discovery, that microbial derived compounds can independently enhance plant growth, could be a step toward minimizing shortfalls related to PGPM technology. This has led many researchers to engage in research activities involving such compounds. So far, the findings are promising as compounds have been reported to enhance plant growth under stressed and non-stressed conditions in a wide range of plant species. This review compiles current knowledge on microbial derived compounds, taking a reader through a summarized protocol of their isolation and identification, their relevance in present agricultural trends, current use and limitations, with a view to giving the reader a picture of where the technology has come from, and an insight into where it could head, with some suggestions regarding the probable best ways forward.
Collapse
Affiliation(s)
- Judith Naamala
- Smith Laboratory, Department of Plant Science, McGill University, Quebec, QC, Canada
| | - Donald L Smith
- Smith Laboratory, Department of Plant Science, McGill University, Quebec, QC, Canada
| |
Collapse
|
8
|
Alizadeh-Moghaddam G, Rezayatmand Z, Esfahani MN, Khozaei M. Bio-genetic analysis of resistance in tomato to early blight disease, Alternaria alternata. PHYTOCHEMISTRY 2020; 179:112486. [PMID: 32828067 DOI: 10.1016/j.phytochem.2020.112486] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/09/2020] [Accepted: 08/08/2020] [Indexed: 05/29/2023]
Abstract
Early blight disease (EB), Alternaria alternata, is destructive on Solanum lycopersicum Mill. The responses of 35 domestic and exotic commercial tomato genotypes to early blight were examined at transplanting and maturing stages using genetic diversity analysis, with 15 Inter Simple Sequence Repeat (ISSR) primers, total phenolic content (TPC), and enzymatic activity of catalase (CAT), phenylalanine ammonia lyase (PAL), peroxidase (POD) and superoxide dismutase (SOD) assays. The disease severity ranged from 18 to 87.5%. Eleven of 15 ISSR primers generated 68 loci of which 63 (90%) were polymorphic. Polymorphism information content value varied from 0.3 to 0.5 with an average of 0.4. Nei's measure of the average gene diversity ranged from 0.06 to 0.5. The Tomato genotypes were divided into five clusters in Un-weighted Pair Group Method with Arithmetic Mean (UPGMA) analysis, showing a considerable similarity between resistance level and molecular classification pattern. Antioxidant analysis indicated a significant increase in TPC and CAT, POD, PAL and SOD activities in most inoculated tomato genotypes at both growth stages. The highest increase in activity was seen in PAL (5-fold) and TPC (4-fold) at transplanting stage, whereas the highest TPC (2 to 3-fold) and POD activity (3-fold) were found at maturing stage in all the inoculated resistant genotypes in comparison with controls. Esfahan Local and H. a.s 2274 showed the highest level of activity in POD (2.5- and 3- fold, respectively) and TPC (2.5- and 4-fold, respectively). Our results suggest that using both genetic diversity and enzymatic diversity as markers, it is possible to discriminate resistant from susceptible tomato genotypes to early blight disease.
Collapse
Affiliation(s)
- Giti Alizadeh-Moghaddam
- Department of Biology, Falavarjan Branch, Islamic Azad University, Isfahan, 84517-31167, Iran.
| | - Zahra Rezayatmand
- Department of Biology, Falavarjan Branch, Islamic Azad University, Isfahan, 84517-31167, Iran.
| | - Mehdi Nasr- Esfahani
- Plant Protection Research Division, Isfahan Center for Research and Education in Agricultural Science and Natural Resources, (AREEO), Isfahan, 81786-96446, Iran.
| | - Mahdi Khozaei
- Plant Biotechnology, Department of Biology, University of Isfahan, Isfahan, 81746-73441, Iran.
| |
Collapse
|
9
|
Nasr-Esfahani M, Hashemi L, Nasehi A, Nasr-Esfahani A, Nasr-Esfahani A. Novel Cucumis enzymes associated with host-specific disease resistance to Phytophthora melonis Katsura. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1810123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Mehdi Nasr-Esfahani
- Plant Protection Research Department, Isfahan Agriculture and Natural Resource Research and Education Center, AREEO, Isfahan, Iran
| | - Lida Hashemi
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Abbas Nasehi
- Department of Plant Protection, Institute of Plantation Studies, Universiti Putra Malaysia, Serdang, Malaysia
| | - Ava Nasr-Esfahani
- Department of Mycology and Parasitology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arman Nasr-Esfahani
- Department of Pharmacy, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
10
|
Nazari M, Smith DL. A PGPR-Produced Bacteriocin for Sustainable Agriculture: A Review of Thuricin 17 Characteristics and Applications. FRONTIERS IN PLANT SCIENCE 2020; 11:916. [PMID: 32733506 PMCID: PMC7358586 DOI: 10.3389/fpls.2020.00916] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/04/2020] [Indexed: 05/08/2023]
Abstract
A wide range of prokaryotes produce and excrete bacteriocins (proteins with antimicrobial activity) to reduce competition from closely related strains. Application of bacteriocins is of great importance in food industries, while little research has been focused on the agricultural potential of bacteriocins. A number of bacteriocin producing bacteria are members of the phytomicrobiome, and some strains are plant growth promoting rhizobacteria (PGPR). Thuricin 17 is a single small peptide with a molecular weight of 3.162 kDa, a subclass IId bacteriocin produced by Bacillus thuringiensis NEB17, isolated from soybean nodules. It is either cidal or static to a wide range of prokaryotes. In this way, it removes key competition from the niche space of the producer organism. B. thuringiensis NEB17 was isolated from soybean root nodules, and thus is a member of the phytomicrobiome. Interestingly, thuricin 17 is not active against a wide range of rhizobial strains involved in symbiotic nitrogen fixation with legumes or against other PGPR. In addition, it stimulates plant growth, particularly in the presence of abiotic stresses. The stresses it assists with include key ones associated with climate change (drought, high temperature, and soil salinity). Hence, in the presence of stress, it increases the size of the overall niche space, within plant roots, for B. thuringiensis NEB17. Through its anti-microbial activity, it could also enhance plant growth via control of specific plant pathogens. None of the isolated bacteriocins have been examined as broadly as thuricin 17 on plant growth promotion. Thus, this review focuses on the effect of thuricin 17 as a microbe to plant signal that assists crop plants in managing stress and making agricultural systems more climate change resilient.
Collapse
|
11
|
Prabhukarthikeyan S, Keerthana U, Raguchander T. Antibiotic-producing Pseudomonas fluorescens mediates rhizome rot disease resistance and promotes plant growth in turmeric plants. Microbiol Res 2018; 210:65-73. [DOI: 10.1016/j.micres.2018.03.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/10/2018] [Accepted: 03/23/2018] [Indexed: 10/17/2022]
|
12
|
Dias MP, Bastos MS, Xavier VB, Cassel E, Astarita LV, Santarém ER. Plant growth and resistance promoted by Streptomyces spp. in tomato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 118:479-493. [PMID: 28756346 DOI: 10.1016/j.plaphy.2017.07.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/16/2017] [Accepted: 07/19/2017] [Indexed: 05/02/2023]
Abstract
Plant Growth Promoting Rhizobacteria (PGPR) represent an alternative to improve plant growth and yield as well as to act as agents of biocontrol. This study characterized isolates of Streptomyces spp. (Stm) as PGPR, determined the antagonism of these isolates against Pectobacterium carotovorum subsp. brasiliensis (Pcb), evaluated the ability of Stm on promoting growth and modulating the defense-related metabolism of tomato plants, and the potential of Stm isolates on reducing soft rot disease in this species. The VOC profile of Stm was also verified. Promotion of plant growth was assessed indirectly through VOC emission and by direct interaction with Stm isolates in the roots. Evaluation of soft rot disease was performed in vitro on plants treated with Stm and challenged with Pcb. Enzymes related to plant defense were then analyzed in plants treated with three selected isolates of Stm, and PM1 was chosen for further Pcb-challenging experiment. Streptomyces spp. isolates displayed characteristics of PGPR. PM3 was the isolate with efficient antagonism against Pcb by dual-culture. Most of the isolates promoted growth of root and shoot of tomato plants by VOC, and PM5 was the isolate that most promoted growth by direct interaction with Stm. Soft rot disease and mortality of plants were significantly reduced when plants were treated with StmPM1. Modulation of secondary metabolism was observed with Stm treatment, and fast response of polyphenoloxidases was detected in plants pretreated with StmPM1 and challenged with Pcb. Peroxidase was significantly activated three days after infection with Pcb in plants pretreated with StmPM1. Results suggest that Streptomyces sp. PM1 and PM5 have the potential to act as PGPR.
Collapse
Affiliation(s)
- Maila P Dias
- Laboratório de Biotecnologia Vegetal, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, Porto Alegre, RS 90619-900, Brazil
| | - Matheus S Bastos
- Laboratório de Biotecnologia Vegetal, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, Porto Alegre, RS 90619-900, Brazil
| | - Vanessa B Xavier
- Laboratório de Operações Unitárias, Faculdade de Engenharia, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, Porto Alegre, RS 90619-900, Brazil
| | - Eduardo Cassel
- Laboratório de Operações Unitárias, Faculdade de Engenharia, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, Porto Alegre, RS 90619-900, Brazil
| | - Leandro V Astarita
- Laboratório de Biotecnologia Vegetal, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, Porto Alegre, RS 90619-900, Brazil
| | - Eliane R Santarém
- Laboratório de Biotecnologia Vegetal, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, Porto Alegre, RS 90619-900, Brazil.
| |
Collapse
|
13
|
Xie JH, Chai TT, Xu R, Liu D, Yang YX, Deng ZC, Jin H, He H. Induction of defense-related enzymes in patchouli inoculated with virulent Ralstonia solanacearum. ELECTRON J BIOTECHN 2017. [DOI: 10.1016/j.ejbt.2017.03.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
14
|
Smith DL, Subramanian S, Lamont JR, Bywater-Ekegärd M. Signaling in the phytomicrobiome: breadth and potential. FRONTIERS IN PLANT SCIENCE 2015; 6:709. [PMID: 26442023 PMCID: PMC4563166 DOI: 10.3389/fpls.2015.00709] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/24/2015] [Indexed: 05/18/2023]
Abstract
Higher plants have evolved intimate, complex, subtle, and relatively constant relationships with a suite of microbes, the phytomicrobiome. Over the last few decades we have learned that plants and microbes can use molecular signals to communicate. This is well-established for the legume-rhizobia nitrogen-fixing symbiosis, and reasonably elucidated for mycorrhizal associations. Bacteria within the phytomircobiome communicate among themselves through quorum sensing and other mechanisms. Plants also detect materials produced by potential pathogens and activate pathogen-response systems. This intercommunication dictates aspects of plant development, architecture, and productivity. Understanding this signaling via biochemical, genomics, proteomics, and metabolomic studies has added valuable knowledge regarding development of effective, low-cost, eco-friendly crop inputs that reduce fossil fuel intense inputs. This knowledge underpins phytomicrobiome engineering: manipulating the beneficial consortia that manufacture signals/products that improve the ability of the plant-phytomicrobiome community to deal with various soil and climatic conditions, leading to enhanced overall crop plant productivity.
Collapse
Affiliation(s)
- Donald L. Smith
- Plant Science Department, McGill University/Macdonald Campus, Sainte-Anne-de-Bellevue, QCCanada
| | | | - John R. Lamont
- Plant Science Department, McGill University/Macdonald Campus, Sainte-Anne-de-Bellevue, QCCanada
| | | |
Collapse
|
15
|
Li Y, Gu Y, Li J, Xu M, Wei Q, Wang Y. Biocontrol agent Bacillus amyloliquefaciens LJ02 induces systemic resistance against cucurbits powdery mildew. Front Microbiol 2015; 6:883. [PMID: 26379654 PMCID: PMC4551870 DOI: 10.3389/fmicb.2015.00883] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 08/11/2015] [Indexed: 11/13/2022] Open
Abstract
Powdery mildew is a fungal disease found in a wide range of plants and can significantly reduce crop yields. Bacterial strain LJ02 is a biocontrol agent (BCA) isolated from a greenhouse in Tianjin, China. In combination of morphological, physiological, biochemical and phylogenetic analyses, strain LJ02 was classified as a new member of Bacillus amyloliquefaciens. Greenhouse trials showed that LJ02 fermentation broth (LJ02FB) can effectively diminish the occurrence of cucurbits powdery mildew. When treated with LJ02FB, cucumber seedlings produced significantly elevated production of superoxide dismutase, peroxidase, polyphenol oxidase and phenylalanine ammonia lyase as compared to that of the control. We further confirmed that the production of free salicylic acid (SA) and expression of one pathogenesis-related (PR) gene PR-1 in cucumber leaves were markedly elevated after treating with LJ02FB, suggesting that SA-mediated defense response was stimulated. Moreover, LJ02FB-treated cucumber leaves could secrete resistance-related substances into rhizosphere that inhibit the germination of fungi spores and the growth of pathogens. Finally, we separated bacterium and its fermented substances to test their respective effects and found that both components have SA-inducing activity and bacterium plays major roles. Altogether, we identified a BCA against powdery mildew and its mode of action by inducing systemic resistance such as SA signaling pathway.
Collapse
Affiliation(s)
- Yunlong Li
- College of Horticulture and Landscape, Tianjin Agricultural University , Tianjin, China
| | - Yilin Gu
- College of Horticulture and Landscape, Tianjin Agricultural University , Tianjin, China
| | - Juan Li
- College of Horticulture and Landscape, Tianjin Agricultural University , Tianjin, China
| | - Mingzhu Xu
- College of Horticulture and Landscape, Tianjin Agricultural University , Tianjin, China
| | - Qing Wei
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences , Beijing, China
| | - Yuanhong Wang
- College of Horticulture and Landscape, Tianjin Agricultural University , Tianjin, China
| |
Collapse
|
16
|
New Bacteriocin from Bacillus clausii StrainGM17: Purification, Characterization, and Biological Activity. Appl Biochem Biotechnol 2013; 171:2186-200. [DOI: 10.1007/s12010-013-0489-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 12/28/2012] [Indexed: 10/26/2022]
|
17
|
de la Fuente-Salcido NM, Casados-Vázquez LE, Barboza-Corona JE. Bacteriocins ofBacillus thuringiensiscan expand the potential of this bacterium to other areas rather than limit its use only as microbial insecticide. Can J Microbiol 2013; 59:515-22. [DOI: 10.1139/cjm-2013-0284] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Various strains of Bacillus thuringiensis are among the most successful entomopathogenic bacteria used commercially as biopesticides owing to their ability to synthesize insecticidal crystal (Cry) and cytolytic (Cyt) protein toxins during sporulation, and vegetative insecticidal (VIPs) proteins during the vegetative phase of growth. Whereas much is known about the molecular biology of Cry, Cyt, and VIPs, comparatively little is known about other proteins and metabolites synthesized by B. thuringiensis that could also have applied value. Here, we review recent reports on bacteriocins synthesized by this bacterium as they relate to antibacterial activity, molecular genetics, biophysical and biochemical properties, and methods used to separate and purify these antimicrobial peptides. We highlight the potential of bacteriocins for use as food preservatives, antibiotics, plant protection, and plant growth promoters. We suggest that B. thuringiensis could be used not only in biological control of insects but also in other agronomical and industrial areas of public interest.
Collapse
Affiliation(s)
- Norma M. de la Fuente-Salcido
- Universidad Autónoma de Coahuila, Escuela de Ciencias Biológicas, Torreón, Coahuila 27104, México
- Universidad de Guanajuato Campus Irapuato-Salamanca, División Ciencias de la Vida, Posgrado en Biociencias
| | - Luz Edith Casados-Vázquez
- Universidad de Guanajuato Campus Irapuato-Salamanca, División Ciencias de la Vida, Posgrado en Biociencias
| | - J. Eleazar Barboza-Corona
- Universidad de Guanajuato Campus Irapuato-Salamanca, División Ciencias de la Vida, Posgrado en Biociencias
- Departamento de Alimentos, Irapuato, Guanajuato, 36500, México
| |
Collapse
|
18
|
Purification and biochemical characterization of a highly thermostable bacteriocin isolated from Brevibacillus brevis strain GM100. Biosci Biotechnol Biochem 2013; 77:151-60. [PMID: 23291759 DOI: 10.1271/bbb.120681] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A bacteriocin-producing (11,000 AU mL(-1)) strain was isolated from the rhizosphere of healthy Algerian plants Ononis angustissima Lam., and identified as Brevibacillus brevis strain GM100. The bacteriocin, called Bac-GM100, was purified to homogeneity from the culture supernatant, and, based on MALDI-TOF/MS analysis, was a monomer protein with a molecular mass of 4375.66 Da. The 21 N-terminal residues of Bac-GM100 displayed 65% homology with thurincin H from Bacillus thuringiensis. Bac-GM100 was extremely heat-stable (20 min at 120 °C), and was stable within a pH range of 3-10. It proved sensitive to various proteases, which demonstrated its protein nature. It was also found to display a bactericidal mode of action against gram-negative (Salmonella enteric ATCC 43972, Pseudomonas aeruginosa ATCC 49189, and Agrobacterium tumefaciens C58) and gram-positive (Enterococcus faecalis ENSAIA 631 and Staphylococcus aureus ATCC 6538) bacteria, and a fungistatic mode of action against the pathogenic fungus Candida tropicalis R2 CIP 203.
Collapse
|