1
|
El Houari A, Ranchou-Peyruse M, Carlier E, Ranchou-Peyruse A, Hirschler-Réa A, Bennisse R, Bouterfas R, McDonald JE, Guyoneaud R, Qatibi AI. Representatives of the Synergistaceae family, taxonomic description and genome sequence of Caenicola nitritireducens gen nov., sp. nov., a novel fermenting and amino-acid degrading bacterium isolated from a municipal anaerobic digester sludge. Syst Appl Microbiol 2025; 48:126607. [PMID: 40288042 DOI: 10.1016/j.syapm.2025.126607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/12/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
Members of the phylum Synergistota are important but understudied components of microbial communities during anaerobic digestion. In this study, their diversity was assessed in full-scale anaerobic digester sludge samples from Marrakesh wastewater treatment plant (Morocco), using 16S rRNA gene community profiling, as well as targeted isolation, physiological characterization, and genome sequencing of novel Synergistaceae isolates. The 16S rRNA gene analysis identified 23 operational taxonomic units (OTUs) belonging to the family of Synergistaceae, representing 8.8 % of the total microbial community. 17 of these OTUs belonged to previously uncultured taxa. A dominant OTU19, presumably a new representative of the family of Synergistaceae was isolated in pure culture (strain DS-S4T) and subjected to both culture- and genome-based characterizations. Phylogenetic analysis revealed that strain DZ-S4T was related to Cloacibacillus porcorum CL-84T and Cloacibacillus evryensis 158T but with low sequence similarity of 89.94 % and 88.60 %, respectively. Based on genome relatedness, including Average Nucleotide Identity (ANI) and Amino Acid Identity (AAI), strain DZ-S4T is considered to represent a novel genus for which the name Caenicola gen.nov is proposed. Moreover, several phenotypic and eco-physiological properties differentiated the novel isolate from its related species, indicating that the strain represents a new species for which the name Caenicola nitritireducens sp. nov. is proposed, with strain DZ-S4T (=DSM 104940T = JCM 31897T) being the type strain. Additionally, this study investigates the ecological role of strain DZ-S4T, specifically the protein degradation, the bioconversion of carbohydrates, and the nitrite reduction during anaerobic digestion.
Collapse
Affiliation(s)
- Abdelaziz El Houari
- Anaerobic Microbiology Team (E02B26), Sciences and Techniques Faculty, Cadi Ayyad University, PO Box 549, 40 000 Marrakesh, Morocco; Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 5254, Pau, France.
| | - Magali Ranchou-Peyruse
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 5254, Pau, France; Université de Pau et des Pays de l'Adour, E2S UPPA, LaTEP, Pau, France
| | - Elisabeth Carlier
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 5254, Pau, France
| | | | - Agnès Hirschler-Réa
- Aix Marseille Univ, Université de Toulon, CNRS, IRD MIO UM110, Marseille, France
| | - Rhizlane Bennisse
- Anaerobic Microbiology Team (E02B26), Sciences and Techniques Faculty, Cadi Ayyad University, PO Box 549, 40 000 Marrakesh, Morocco
| | - Radia Bouterfas
- Anaerobic Microbiology Team (E02B26), Sciences and Techniques Faculty, Cadi Ayyad University, PO Box 549, 40 000 Marrakesh, Morocco; Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 5254, Pau, France
| | - James E McDonald
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Rémy Guyoneaud
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 5254, Pau, France
| | - Abdel-Illah Qatibi
- Anaerobic Microbiology Team (E02B26), Sciences and Techniques Faculty, Cadi Ayyad University, PO Box 549, 40 000 Marrakesh, Morocco.
| |
Collapse
|
2
|
Cheng GB, Bongcam‐Rudloff E, Schnürer A. Metagenomic Exploration Uncovers Several Novel 'Candidatus' Species Involved in Acetate Metabolism in High-Ammonia Thermophilic Biogas Processes. Microb Biotechnol 2025; 18:e70133. [PMID: 40126889 PMCID: PMC11932165 DOI: 10.1111/1751-7915.70133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/26/2025] Open
Abstract
Biogas reactors operating at elevated ammonia levels are commonly susceptible to process disturbances, further augmented at thermophilic temperatures. The major cause is assumed to be linked to inhibition followed by an imbalance between different functional microbial groups, centred around the last two steps of the anaerobic digestion, involving acetogens, syntrophic acetate oxidisers (SAOB) and methanogens. Acetogens are key contributors to reactor efficiency, acting as the crucial link between the hydrolysis and fermentation steps and the final methanogenesis step. Their major product is acetate, at high ammonia levels further converted by SAOB and hydrogenotrophic methanogens to biogas. Even though these functionally different processes are well recognised, less is known about the responsible organism at elevated temperature and ammonia conditions. The main aim of this study was to garner insights into the penultimate stages in three thermophilic reactors (52°C) operated under high ammonia levels (FAN 0.7-1.0 g/L; TAN 3.6-4.4 g/L). The primary objective was to identify potential acetogens and SAOBs. Metagenomic data from the three reactors were analysed for the reductive acetyl-CoA pathway (Wood-Ljungdahl Pathway) and glycine synthase reductase pathway. The results revealed a lack of true acetogens but uncovered three potential SAOB candidates that harbour the WLP, 'Candidatus Thermodarwinisyntropha acetovorans', 'Candidatus Thermosyntrophaceticus schinkii', 'Candidatus Thermotepidanaerobacter aceticum', and a potential lipid-degrader 'Candidatus Thermosyntrophomonas ammoiaca'.
Collapse
Affiliation(s)
- George B. Cheng
- Department of Molecular SciencesSwedish University of Agricultural SciencesUppsalaSweden
| | - Erik Bongcam‐Rudloff
- Department of Animal BiosciencesSwedish University of Agricultural SciencesUppsalaSweden
| | - Anna Schnürer
- Department of Molecular SciencesSwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
3
|
Hmaissia A, Vaneeckhaute C. Effects of inoculum temperature and characteristics on cellulose and sewage sludge biodegradability: A comparative study of three inocula. CHEMOSPHERE 2025; 372:144077. [PMID: 39761703 DOI: 10.1016/j.chemosphere.2025.144077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025]
Abstract
The role of inoculum in initiating anaerobic digestion (AD), and accelerating the start-up of anaerobic digesters has been well-documented. However, the effect of aligning the origin temperature of the inoculum with the operational temperature of the new digester remains underexplored. This study investigates how the origin temperature and characteristics of the inoculum affect the kinetics and biodegradability of sewage sludge (SS) and microcrystalline cellulose (MCC) under mesophilic and thermophilic conditions. Three inocula were used: one thermophilic (I1) and two mesophilic inocula (I2 and I3) in six Biomethane Potential tests (BMP) at 37 and 55 °C. Results indicated that inoculum temperature had no significant impact on the BMP values for MCC and SS, regardless of the experimental temperature. However, kinetic analyses revealed that I2 significantly outperformed I1 and I3 under both temperature conditions. This was attributed to I2's more diverse bacterial structure and lower inhibitor concentrations. High alkalinity, ammonia, and volatile fatty acids (VFA), as well as the presence of denitrifying bacteria (41.7 % of total communities in I1) contributed to poor kinetics of I1 and I3, which were unsuitable for mesophilic and thermophilic temperatures, respectively. Alkalinity (correlation with the Simpson index = -0.92, p < 0.05) and ammonia (correlations with Chao and ACE = -0.93 and -0.91, respectively, p < 0.05) were significantly linked to low bacterial diversity, while high VFA levels were strongly associated with poor inoculum kinetics (correlation with degradation kinetics = -0.90 to -0.99, p < 0.05). These findings offer insights into assessing the inoculum suitability based on its characteristics.
Collapse
Affiliation(s)
- Amal Hmaissia
- BioEngine Research team on green process Engineering and Biorefineries, Chemical Engineering Department, Université Laval, Pavillon Adrien-Pouliot 1065, av. de la Médecine Québec, Québec, Canada; CentrEau, Centre de Recherche sur l'eau, Université Laval, 1065 Avenue de la Médecine, Québec, QC, G1V 0A6, Canada.
| | - Céline Vaneeckhaute
- BioEngine Research team on green process Engineering and Biorefineries, Chemical Engineering Department, Université Laval, Pavillon Adrien-Pouliot 1065, av. de la Médecine Québec, Québec, Canada; CentrEau, Centre de Recherche sur l'eau, Université Laval, 1065 Avenue de la Médecine, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
4
|
Messer LF, Wattiez R, Matallana-Surget S. A closer look at plastic colonisation: Prokaryotic dynamics in established versus newly synthesised marine plastispheres and their planktonic state. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124479. [PMID: 38960113 DOI: 10.1016/j.envpol.2024.124479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
The taxonomy of marine plastisphere communities has been extensively studied, demonstrating the ubiquity of hydrocarbonoclastic bacteria of potential biotechnological significance. However, prokaryotic functioning on plastic surfaces has received limited attention, and the question of whether these microorganisms are active and expressing specific molecular mechanisms underpinning plastisphere colonisation remains to be addressed. The aim of this study was to investigate the plastic colonisation process, to identify the active taxa involved in biofilm formation and the mechanisms used to initiate colonisation. To achieve this, a marine plastisphere characterised by active hydrocarbonoclastic genera was used as the inoculum for a short-term microcosm experiment using virgin low-density polyethylene as the sole carbon source. Following incubation for 1 and 2 weeks (representing early and late colonisation, respectively), a taxonomic and comparative metaproteomic approach revealed a significant shift in plastisphere diversity and composition, yet highlighted stability in the predominance of active Proteobacteria spanning 16 genera, including Marinomonas, Pseudomonas, and Pseudoalteromonas. Relative quantification of 1762 proteins shared between the initial plastisphere inoculum, the microcosm plastisphere and the planktonic cells in the surrounding artificial seawater, provided insights into the differential regulation of proteins associated with plastisphere formation. This included the upregulation of proteins mediating cellular attachment in the plastisphere, for example flagellin expressed by Marinomonas, Cobetia, Pseudoalteromonas, and Pseudomonas, and curli expressed by Cobetia. In addition to the differential regulation of energy metabolism in Marinomonas, Psychrobacter, Pseudomonas and Cobetia within the plastisphere relative to the surrounding seawater. Further, we identified the upregulation of amino acid metabolism and transport, including glutamine hydrolysis to glutamate in Marinomonas and unclassified Halomonadaceae, potentially coupled to ammonia availability and oxidative stress experienced within the plastisphere. Our study provides novel insights into the dynamics of plastisphere formation and function, highlighting potential targets for regulating plastisphere growth to enhance plastic bioremediation processes.
Collapse
Affiliation(s)
- Lauren F Messer
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, FK9 4LA, United Kingdom.
| | - Ruddy Wattiez
- Laboratory of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Place du Parc 20, 7000, Mons, Belgium
| | - Sabine Matallana-Surget
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, FK9 4LA, United Kingdom.
| |
Collapse
|
5
|
Messer LF, Lee CE, Wattiez R, Matallana-Surget S. Novel functional insights into the microbiome inhabiting marine plastic debris: critical considerations to counteract the challenges of thin biofilms using multi-omics and comparative metaproteomics. MICROBIOME 2024; 12:36. [PMID: 38389111 PMCID: PMC10882806 DOI: 10.1186/s40168-024-01751-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/03/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND Microbial functioning on marine plastic surfaces has been poorly documented, especially within cold climates where temperature likely impacts microbial activity and the presence of hydrocarbonoclastic microorganisms. To date, only two studies have used metaproteomics to unravel microbial genotype-phenotype linkages in the marine 'plastisphere', and these have revealed the dominance of photosynthetic microorganisms within warm climates. Advancing the functional representation of the marine plastisphere is vital for the development of specific databases cataloging the functional diversity of the associated microorganisms and their peptide and protein sequences, to fuel biotechnological discoveries. Here, we provide a comprehensive assessment for plastisphere metaproteomics, using multi-omics and data mining on thin plastic biofilms to provide unique insights into plastisphere metabolism. Our robust experimental design assessed DNA/protein co-extraction and cell lysis strategies, proteomics workflows, and diverse protein search databases, to resolve the active plastisphere taxa and their expressed functions from an understudied cold environment. RESULTS For the first time, we demonstrate the predominance and activity of hydrocarbonoclastic genera (Psychrobacter, Flavobacterium, Pseudomonas) within a primarily heterotrophic plastisphere. Correspondingly, oxidative phosphorylation, the citrate cycle, and carbohydrate metabolism were the dominant pathways expressed. Quorum sensing and toxin-associated proteins of Streptomyces were indicative of inter-community interactions. Stress response proteins expressed by Psychrobacter, Planococcus, and Pseudoalteromonas and proteins mediating xenobiotics degradation in Psychrobacter and Pseudoalteromonas suggested phenotypic adaptations to the toxic chemical microenvironment of the plastisphere. Interestingly, a targeted search strategy identified plastic biodegradation enzymes, including polyamidase, hydrolase, and depolymerase, expressed by rare taxa. The expression of virulence factors and mechanisms of antimicrobial resistance suggested pathogenic genera were active, despite representing a minor component of the plastisphere community. CONCLUSION Our study addresses a critical gap in understanding the functioning of the marine plastisphere, contributing new insights into the function and ecology of an emerging and important microbial niche. Our comprehensive multi-omics and comparative metaproteomics experimental design enhances biological interpretations to provide new perspectives on microorganisms of potential biotechnological significance beyond biodegradation and to improve the assessment of the risks associated with microorganisms colonizing marine plastic pollution. Video Abstract.
Collapse
Affiliation(s)
- Lauren F Messer
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland
| | - Charlotte E Lee
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland
| | - Ruddy Wattiez
- Proteomics and Microbiology Department, University of Mons, Mons, 7000, Belgium
| | - Sabine Matallana-Surget
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland.
| |
Collapse
|
6
|
Yaish MW. Isolation and Identification of Growth-Promoting Bacteria from Plants Growing Under Abiotic Stresses. Methods Mol Biol 2024; 2832:241-256. [PMID: 38869801 DOI: 10.1007/978-1-0716-3973-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Identification and isolation of plant growth-promoting bacteria (PGPB) are critical steps toward understanding the role of these bacteria in stress tolerance in plants. This procedure also provides essential knowledge about the microbes needed to formulate effective biofertilizers. This chapter describes culture-dependent and culture-independent strategies to identify and isolate PGPB. The culture-dependent strategy commonly involves growing PGPB on general and selective media. However, the culture-independent strategy involves next-generation sequencing technologies. A combination of both strategies would identify the structure of the bacterial communities and isolate bacteria from their environments. Therefore, this chapter describes a comprehensive strategy where the methods are sequentially applied to identify and isolate epiphytic and endophytic PGPB from a particular environmental sample. However, a single procedure can also be employed to identify and isolate a specific type of PGPB.
Collapse
Affiliation(s)
- Mahmoud W Yaish
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman.
| |
Collapse
|
7
|
Han B, Yu Q, Wang X, Feng T, Long M, Li H. Copper and temperature shaped abundant and rare community assembly respectively in the Yellow River. Appl Microbiol Biotechnol 2023; 107:3847-3858. [PMID: 37133799 DOI: 10.1007/s00253-023-12538-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/14/2023] [Accepted: 04/13/2023] [Indexed: 05/04/2023]
Abstract
Untangling assembly and microbial interaction of abundant and rare microbiota in aquatic ecosystem is pivotal for understanding how community assembly respond to environmental variables and co-occurrence patterns. Here, we explored the assembly mechanisms, their drivers, and species co-occurrence of abundant and rare microbiomes in the Yellow River using 16S rRNA gene sequencing in Lanzhou, China. Here, abundant community was ubiquitous across all sites, whereas rare community was uneven distributed. The richness and community dissimilarity of rare taxa were significantly greater than those of abundant ones. Stochastic processes structured the rare community assembly in spring and winter, while deterministic processes shaped the abundant and rare community assembly in other seasons and all sites. Copper and water temperature mediated the balance between deterministic and stochastic processes of abundant and rare community, respectively. A few abundant taxa with closer relationships frequently occupied central positions and had a great effect on other co-occurrences in the network, while the majority of keystone microbiota were rare microbiome and played a considerable part in maintaining the network structure. Our study provides some ecological proposals for water quality management and ecological stability of the Yellow River. KEY POINTS: • Deterministic process dominated abundant and rare community assembly. • Cu and TW mediated the balance of abundant and rare community assembly respectively. • Abundant taxa had a greater effect on other co-occurrences in the network.
Collapse
Affiliation(s)
- Binghua Han
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Qiaoling Yu
- State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland microbiome, Lanzhou University, Lanzhou, 730000, China
| | - Xiaochen Wang
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Tianshu Feng
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Meng Long
- Shenzhen Institute of Guangdong Ocean University, Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China.
| | - Huan Li
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China.
- Shenzhen Institute of Guangdong Ocean University, Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China.
| |
Collapse
|
8
|
Liu X, Lee C, Kim JY. Comparison of mesophilic and thermophilic anaerobic digestions of thermal hydrolysis pretreated swine manure: Process performance, microbial communities and energy balance. J Environ Sci (China) 2023; 126:222-233. [PMID: 36503751 DOI: 10.1016/j.jes.2022.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 06/17/2023]
Abstract
Anaerobic digestion (AD) of swine manure (SM) commonly shows low biogas output and unsatisfactory economic performance. In this study, thermophilic AD (TAD, 50 ± 1 °C) was combined with thermal hydrolysis pretreatment (THP, 170 °C/10 bar), to investigate its potential for maximizing biogas yield, securing successful digestion and microbial diversity, as well as improving energy balance. Four lab-scale continuously stirred tank reactors were operated for 300 days and compared with each other, i.e., reactor 1 (raw SM fed in mesophilic AD: RSM-MAD), reactor 2 (THP-treated SM fed in MAD: TSM-MAD), reactor 3 (RSM-TAD), and reactor 4 (TSM-TAD). The results showed that THP was efficient to increase methane production of SM, TSM-TAD mode led to the highest methane yield (129.8 ± 40.5 mL-CH4/g-VS/day) among the tests (p < 0.05). Although TAD was more likely to induce free ammonia (> 700 mg/L) or volatile fatty acids (> 6000 mg/L) accumulation compared with MAD in start-up phase, TSM-TAD treatment mode behaved a sustainable digestion process in a long-term operation. For TSM-TAD scenario, higher Shannon-Weaver (3.873) and lower Simpson index (0.061) indicated this mode ensured and enlarged the diversity of bacteria communities. Phylum Bathyarchaeota was dominant (59.3%-90.0%) in archaea community, followed by Euryarchaeota in the four reactors. RSM-MAD treatment mode achieved the highest energy output (4.65 GJ/day), TSM-TAD was less effective (-17.38 GJ/day) due to increased energy demands. Thus improving the energetic efficiency of THP units is recommended for the development of TSM-TAD treatment mode.
Collapse
Affiliation(s)
- Xiaohui Liu
- Department of Civil and Environmental Engineering, Seoul National University, Seoul 08826, Korea
| | - Changmin Lee
- Department of Civil and Environmental Engineering, Seoul National University, Seoul 08826, Korea
| | - Jae Young Kim
- Department of Civil and Environmental Engineering, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
9
|
Lee C, Ju M, Lee J, Kim S, Kim JY. Long-term inhibition of chlortetracycline antibiotics on anaerobic digestion of swine manure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116802. [PMID: 36442333 DOI: 10.1016/j.jenvman.2022.116802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/12/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to identify whether chronic effects are present in the anaerobic digestion (AD) of swine manure (SM) containing chlortetracycline (CTC), which is one of the major broad-spectrum veterinary antibiotics, and to elucidate the long-term inhibitory effects and recovery from the inhibition based on AD performance and microbial community. Two continuous-stirred tank reactors treating SM with and without CTC spiking (3 mg/L) were operated for 900 days. Due to the degradation and transformation, the total concentration including CTC's epimer and isomer in the test reactor was 1.5 mg/L. The exposure level was determined according to probabilistically estimated concentrations with uncertainties in field conditions. Until the cessation of CTC exposure on day 585, the methane generation of test reactor continuously decreased to 55 ± 17 mL/g-VS/day, 53% that of control. The methane generation and organic removal were not recovered within 300 days after the CTC exposure was stopped. During the experiment, stability parameters such as pH, total ammonium nitrogen, the composition of methane and alkalinity were the same for both reactors. The concentration and composition of VFAs in the test reactor were different with those of control but not in inhibition level. Microbial profiles revealed that reduction in bacterial diversity and changed balance in microbial species resulted in the performance downgrade under the long-term antibiotic pressure. Since it is hard to recover from the inhibition and difficult to predict the inhibition using physicochemical indicators, continuous exposure to CTC needs to be avoided for the sustainable management of AD plants treating SM.
Collapse
Affiliation(s)
- Changmin Lee
- Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Munsol Ju
- Department of Living Environment Research, Korea Environment Institute, 370 Sicheong-daero, Sejong, Republic of Korea
| | - Jongkeun Lee
- Department of Environmental and Energy Engineering, College of Engineering, Changwon National University, 20 Changwondaehak-ro, Uichang-gu, Changwon, Gyeongsangnam-do, Republic of Korea
| | - Seunghwan Kim
- Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jae Young Kim
- Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
10
|
Li J, Liu P, Menguy N, Benzerara K, Bai J, Zhao X, Leroy E, Zhang C, Zhang H, Liu J, Zhang R, Zhu K, Roberts AP, Pan Y. Identification of sulfate-reducing magnetotactic bacteria via a group-specific 16S rDNA primer and correlative fluorescence and electron microscopy: strategy for culture-independent study. Environ Microbiol 2022; 24:5019-5038. [PMID: 35726890 DOI: 10.1111/1462-2920.16109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/02/2022] [Accepted: 06/18/2022] [Indexed: 11/28/2022]
Abstract
Magnetotactic bacteria (MTB) biomineralize intracellular magnetic nanocrystals and swim along geomagnetic field lines. While few axenic MTB cultures exist, living cells can be separated magnetically from natural environments for analysis. The bacterial universal 27F/1492R primer pair has been used widely to amplify nearly full-length 16S rRNA genes and to provide phylogenetic portraits of MTB communities. However, incomplete coverage and amplification biases inevitably prevent detection of some phylogenetically specific or non-abundant MTB. Here, we propose a new formulation of the upstream 390F primer that we combined with the downstream 1492R primer to specifically amplify 1,100-bp 16S rRNA gene sequences of sulfate-reducing MTB in freshwater sediments from Lake Weiyanghu, Xi'an, northwestern China. With correlative fluorescence in situ hybridization and scanning/transmission electron microscopy, three novel MTB strains (WYHR-2, WYHR-3, and WYHR-4) from the Desulfobacterota phylum were identified phylogenetically and structurally at the single cell level. Strain WYHR-2 produces bullet-shaped magnetosome magnetite, while the other two strains produce both cubic/prismatic greigite and bullet-shaped magnetite. Our results expand knowledge of bacterial diversity and magnetosome biomineralization of sulfate-reducing MTB. We also propose a general strategy for identifying and characterizing uncultured MTB from natural environments. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jinhua Li
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Peiyu Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Nicolas Menguy
- Sorbonne Université, UMR CNRS 7590, MNHN, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Karim Benzerara
- Sorbonne Université, UMR CNRS 7590, MNHN, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Jinling Bai
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Xiang Zhao
- Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia
| | - Eric Leroy
- ICMPE, University Paris East, UMR 7182, CNRS, 2-8 rue Henri Dunant, Thiais Cedex, France
| | - Chaoqun Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Heng Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Jiawei Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Rongrong Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Keilei Zhu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Andrew P Roberts
- Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Varshney S, Kajale S, Khatri S, Gupta D, Sharma A, Sharma S. Temporal variation in bacterial community profile on patients' bedsheets in a primary healthcare unit. Arch Microbiol 2022; 204:308. [PMID: 35534776 DOI: 10.1007/s00203-022-02921-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/10/2022] [Accepted: 04/13/2022] [Indexed: 11/26/2022]
Abstract
Fabrics serve as fomites in spreading nosocomial infections. As a patient is in close contact with bedsheets, it is important to assess the seasonal variation in bacterial diversity on these in healthcare units. The study was conducted to characterise the bacterial diversity on patients' bedsheets across 7 months in a primary healthcare unit. Polyester-cotton blend fabric was stitched on bedsheets, and temporal dynamics of bacterial communities was assessed from May to November 2019. qPCR and amplicon sequencing of 16S rRNA gene was performed for profiling of bacterial community. Results revealed the dominance of Bacillota followed by Pseudomonadota, and Actinomycetota. A seasonal variation was observed in the bacterial load, with maximum values in June. This indicates the impact of environmental conditions on bacterial abundance and composition on fabrics in healthcare unit. The presence of priority pathogens on the patient bedsheets is a human health concern reiterating the need for season-specific laundering protocol.
Collapse
Affiliation(s)
- Swati Varshney
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Swapnil Kajale
- DBT-National Centre for Cell Science, Pune, Maharashtra, 411007, India
| | - Shivani Khatri
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Deepti Gupta
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Avinash Sharma
- DBT-National Centre for Cell Science, Pune, Maharashtra, 411007, India.
| | - Shilpi Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
12
|
Struckmann Poulsen J, de Jonge N, Vieira Macêdo W, Rask Dalby F, Feilberg A, Lund Nielsen J. Characterisation of cellulose-degrading organisms in an anaerobic digester. BIORESOURCE TECHNOLOGY 2022; 351:126933. [PMID: 35247567 DOI: 10.1016/j.biortech.2022.126933] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/26/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
The recalcitrant nature of lignocellulosic biomass hinders efficient exploitation of this fraction for energy production. A better understanding of the microorganisms able to convert plant-based feedstocks is needed to improve anaerobic digestion of lignocellulosic biomass. In this study, active thermophilic cellulose-degrading microorganisms were identified from a full-scale anaerobic digester fed with maize by using metagenome-resolved protein stable isotope probing (protein-SIP). 13C-cellulose was converted into 13C-methane with a 13/12C isotope ratio of 0.127 after two days of incubation. Metagenomic analysis revealed 238 different genes coding for carbohydrate-active enzymes (CAZymes), six of which were directly associated with cellulose degradation. The protein-SIP analysis identified twenty heavily labelled peptides deriving from microorganisms actively assimilating labelled carbon from the degradation of 13C-cellulose, highlighting several members of the order Clostridiales. Corynebacterium was identified through CAZyme screening, amplicon analysis, and in the metagenome giving a strong identification of being a cellulose degrader.
Collapse
Affiliation(s)
- Jan Struckmann Poulsen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg E, Denmark
| | - Nadieh de Jonge
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg E, Denmark
| | - Williane Vieira Macêdo
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg E, Denmark
| | - Frederik Rask Dalby
- Department of Biological and Chemical Engineering, Aarhus University, Finlandsgade 12, 8200 Aarhus N, Denmark
| | - Anders Feilberg
- Department of Biological and Chemical Engineering, Aarhus University, Finlandsgade 12, 8200 Aarhus N, Denmark
| | - Jeppe Lund Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg E, Denmark.
| |
Collapse
|
13
|
Muneer MA, Hou W, Li J, Huang X, Ur Rehman Kayani M, Cai Y, Yang W, Wu L, Ji B, Zheng C. Soil pH: a key edaphic factor regulating distribution and functions of bacterial community along vertical soil profiles in red soil of pomelo orchard. BMC Microbiol 2022; 22:38. [PMID: 35109809 PMCID: PMC8808772 DOI: 10.1186/s12866-022-02452-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/24/2022] [Indexed: 12/15/2022] Open
Abstract
Background Soil microbes exist throughout the soil profile and those inhabiting topsoil (0–20 cm) are believed to play a key role in nutrients cycling. However, the majority of the soil microbiology studies have exclusively focused on the distribution of soil microbial communities in the topsoil, and it remains poorly understood through the subsurface soil profile (i.e., 20–40 and 40–60 cm). Here, we examined how the bacterial community composition and functional diversity changes under intensive fertilization across vertical soil profiles [(0–20 cm (RS1), 20–40 cm (RS2), and 40–60 cm (RS3)] in the red soil of pomelo orchard, Pinghe County, Fujian, China. Results Bacterial community composition was determined by 16S rRNA gene sequencing and interlinked with edaphic factors, including soil pH, available phosphorous (AP), available nitrogen (AN), and available potassium (AK) to investigate the key edaphic factors that shape the soil bacterial community along with different soil profiles. The most dominant bacterial taxa were Proteobacteria, Acidobacteria, Actinobacteria, Chloroflexi, Crenarchaeota, and Bacteriodetes. Bacterial richness and diversity was highest in RS1 and declined with increasing soil depth. The distinct distribution patterns of the bacterial community were found across the different soil profiles. Besides, soil pH exhibited a strong influence (pH ˃AP ˃AN) on the bacterial communities under all soil depths. The relative abundance of Proteobacteria, Actinobacteria, Crenarchaeota, and Firmicutes was negatively correlated with soil pH, while Acidobacteria, Chloroflexi, Bacteriodetes, Planctomycetes, and Gemmatimonadetes were positively correlated with soil pH. Co-occurrence network analysis revealed that network topological features were weakened with increasing soil depth, indicating a more stable bacterial community in the RS1. Bacterial functions were estimated using FAPROTAX and the relative abundance of functional bacterial community related to metabolic processes, including C-cycle, N-cycle, and energy production was significantly higher in RS1 compared to RS2 and RS3, and soil pH had a significant effect on these functional microbes. Conclusions This study provided the valuable findings regarding the structure and functions of bacterial communities in red soil of pomelo orchards, and highlighted the importance of soil depth and pH in shaping the soil bacterial population, their spatial distribution and ecological functioning. These results suggest the alleviation of soil acidification by adopting integrated management practices to preserve the soil microbial communities for better ecological functioning. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02452-x.
Collapse
Affiliation(s)
- Muhammad Atif Muneer
- College of Resources and Environment, International Magnesium Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wei Hou
- College of Resources and Environment, International Magnesium Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jian Li
- College of Resources and Environment, International Magnesium Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoman Huang
- College of Resources and Environment, International Magnesium Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Masood Ur Rehman Kayani
- Center for Microbiota and Immunological Diseases, School of Medicine, Shanghai General Hospital, Shanghai Institute of Immunology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Yuanyang Cai
- College of Resources and Environment, International Magnesium Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenhao Yang
- College of Resources and Environment, International Magnesium Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liangquan Wu
- College of Resources and Environment, International Magnesium Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Baoming Ji
- College of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| | - Chaoyuan Zheng
- College of Resources and Environment, International Magnesium Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
14
|
The significance of microbial community functions and symbiosis in enhancing methane production during anaerobic digestion: a review. Symbiosis 2020. [DOI: 10.1007/s13199-020-00734-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Pollution shapes the microbial communities in river water and sediments from the Olifants River catchment, South Africa. Arch Microbiol 2020; 203:295-303. [PMID: 32920672 DOI: 10.1007/s00203-020-02035-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 08/06/2020] [Accepted: 09/02/2020] [Indexed: 10/23/2022]
Abstract
Human activities such as agriculture and mining are leading causes of water pollution worldwide. Individual contaminants are known to negatively affect microbial communities. However, the effect of multifaceted pollution on these communities is less well understood. We investigated, using next-generation sequencing of the 16S rRNA genes, the effects of multisource (i.e., fertilizer industry and mining) chronic pollution on bacterial and archaeal communities in water and sediments from the Olifants River catchment, South Africa. Water samples showed less microbial species diversity than sediments and both habitats displayed different microbial communities. Within each of these habitats, pollution had no effect on alpha diversity but shaped the microbial composition and taxonomy-based predicted functions. Certain prokaryotic taxa and functional groups were indicative of different degrees of pollution. Heterotrophic taxa (e.g., Flavobacterium sp.) and sulphur-oxidizing bacteria (i.e., Thiobacillus sp.) were indicators of pollution in water and sediments, respectively. Ultimately, this information could be used to develop microbial indicators of water quality degradation.
Collapse
|
16
|
Ji M, Kong W, Yue L, Wang J, Deng Y, Zhu L. Salinity reduces bacterial diversity, but increases network complexity in Tibetan Plateau lakes. FEMS Microbiol Ecol 2020; 95:5645230. [PMID: 31778180 DOI: 10.1093/femsec/fiz190] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/26/2019] [Indexed: 11/14/2022] Open
Abstract
Salinity is one of the most important environmental factors influencing bacterial plankton communities in lake waters, while its influence on bacterial interactions has been less explored. Here, we investigated the influence of salinity on the bacterial diversity, interactions and community structure in Tibetan Plateau lakes. Our results revealed that saline lakes (salinity between 0.5 and 50 g/L) harboured similar or even higher bacterial diversity compared with freshwater lakes (< 0.5 g/L), while hyper-saline lakes (> 50 g/L) exhibited the lowest diversity. Network analysis demonstrated that hyper-saline lakes exhibited the highest network complexity, with higher total correlation numbers (particularly the negative correlations), but lower network module numbers than freshwater and saline lakes. Furthermore, salinity dominantly explained the bacterial community structure variations in saline lakes, while those in freshwater and hyper-saline lakes were predominately explained by water temperature and geospatial distance, respectively. The core operational taxonomic units (OTUs), which were ubiquitously present in all lakes, were less sensitive to enhancing salinity than the indicative OTUs whose presence was dependent on lake type. Our findings offer a new understanding of how salinity influences bacterial community in plateau lakes.
Collapse
Affiliation(s)
- Mukan Ji
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing 100101, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100039, P.R. China
| | - Weidong Kong
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing 100101, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100039, P.R. China.,CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Linyan Yue
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing 100101, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100039, P.R. China
| | - Junbo Wang
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, CAS, Beijing 100101, China
| | - Ye Deng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Liping Zhu
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China.,Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, CAS, Beijing 100101, China
| |
Collapse
|
17
|
Lackner N, Wagner AO, Illmer P. Effect of sulfate addition on carbon flow and microbial community composition during thermophilic digestion of cellulose. Appl Microbiol Biotechnol 2020; 104:4605-4615. [PMID: 32219464 PMCID: PMC7190589 DOI: 10.1007/s00253-020-10546-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 01/20/2020] [Accepted: 03/15/2020] [Indexed: 01/04/2023]
Abstract
Substrates with high sulfate levels pose problems for biogas production as they allow sulfate reducing bacteria to compete with syntrophic and methanogenic members of the community. In addition, the end product of sulfate reduction, hydrogen sulfide, is toxic and corrosive. Here we show how sulfate addition affects physiological processes in a thermophilic methanogenic system by analyzing the carbon flow and the microbial community with quantitative PCR and amplicon sequencing of the 16s rRNA gene. A sulfate addition of 0.5 to 3 g/L caused a decline in methane production by 73-92%, while higher sulfate concentrations had no additional inhibitory effect. Generally, sulfate addition induced a shift in the composition of the microbial community towards a higher dominance of Firmicutes and decreasing abundances of Bacteroidetes and Euryarchaeota. The abundance of methanogens (e.g., Methanoculleus and Methanosarcina) was reduced, while sulfate reducing bacteria (especially Candidatus Desulforudis and Desulfotomaculum) increased significantly in presence of sulfate. The sulfate addition had a significant impact on the carbon flow within the system, shifting the end product from methane and carbon dioxide to acetate and carbon dioxide. Interestingly, methane production quickly resumed, when sulfate was no longer present in the system. Despite the strong impact of sulfate addition on the carbon flow and the microbial community structure during thermophilic biogas production, short-term process disturbances caused by unexpected introduction of sulfate may be overcome due to the high resilience of the engaged microorganisms.
Collapse
Affiliation(s)
- Nina Lackner
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020, Innsbruck, Austria.
| | - Andreas O Wagner
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020, Innsbruck, Austria
| | - Paul Illmer
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020, Innsbruck, Austria
| |
Collapse
|
18
|
Ji M, Kong W, Stegen J, Yue L, Wang F, Dong X, Cowan DA, Ferrari BC. Distinct assembly mechanisms underlie similar biogeographical patterns of rare and abundant bacteria in Tibetan Plateau grassland soils. Environ Microbiol 2020; 22:2261-2272. [DOI: 10.1111/1462-2920.14993] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 02/10/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Mukan Ji
- Key Laboratory of Alpine Ecology Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS) Beijing 100101 China
- College of Resources and Environment University of Chinese Academy of Sciences Beijing 100039 China
| | - Weidong Kong
- Key Laboratory of Alpine Ecology Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS) Beijing 100101 China
- College of Resources and Environment University of Chinese Academy of Sciences Beijing 100039 China
- CAS Center for Excellence in Tibetan Plateau Earth Sciences Chinese Academy of Sciences Beijing 100101 China
| | - James Stegen
- Pacific Northwest National Laboratory Richland Washington 99352 USA
| | - Linyan Yue
- Key Laboratory of Alpine Ecology Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS) Beijing 100101 China
- College of Resources and Environment University of Chinese Academy of Sciences Beijing 100039 China
| | - Fei Wang
- Key Laboratory of Alpine Ecology Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS) Beijing 100101 China
- College of Resources and Environment University of Chinese Academy of Sciences Beijing 100039 China
| | - Xiaobin Dong
- State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Resources Science and Technology Beijing Normal University Beijing 100875 China
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Genetics University of Pretoria Pretoria 0002 South Africa
| | - Belinda C Ferrari
- School of Biotechnology and Biomolecular Sciences Australian Centre for Astrobiology, UNSW Sydney Randwick NSW 2052 Australia
| |
Collapse
|
19
|
Indigo Naturalis Ameliorates Dextran Sulfate Sodium-Induced Colitis in Mice by Modulating the Intestinal Microbiota Community. Molecules 2019; 24:molecules24224086. [PMID: 31726738 PMCID: PMC6891465 DOI: 10.3390/molecules24224086] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/18/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022] Open
Abstract
Indigo naturalis (IN) is a traditional Chinese medicine, named Qing-Dai, which is extracted from indigo plants and has been used to treat patients with inflammatory bowel disease (IBD) in China and Japan. Though there are notable effects of IN on colitis, the mechanisms remain elusive. Regarding the significance of alterations of intestinal flora related to IBD and the poor water solubility of the blue IN powder, we predicted that the protective action of IN on colitis may occur through modifying gut microbiota. To investigate the relationships of IN, colitis, and gut microbiomes, a dextran sulfate sodium (DSS)-induced mice colitis model was tested to explore the protective effects of IN on macroscopic colitis symptoms, the histopathological structure, inflammation cytokines, and gut microbiota, and their potential functions. Sulfasalazine (SASP) was used as the positive control. Firstly, because it was a mixture, the main chemical compositions of indigo and indirubin in IN were detected by ultra-performance liquid chromatography (UPLC). The clinical activity score (CAS), hematoxylin and eosin (H&E) staining results, and enzyme-linked immunosorbent assay (ELISA) results in this study showed that IN greatly improved the health conditions of the tested colitis mice, ameliorated the histopathological structure of the colon tissue, down-regulated pro-inflammatory cytokines, and up-regulated anti-inflammatory cytokines. The results of 16S rDNA sequences analysis with the Illumina MiSeq platform showed that IN could modulate the balance of gut microbiota, especially by down-regulating the relative quantity of Turicibacter and up-regulating the relative quantity of Peptococcus. The therapeutic effect of IN may be closely related to the anaerobic gram-positive bacteria of Turicibacter and Peptococcus. The inferred metagenomes from 16S data using PICRUSt demonstrated that decreased metabolic genes, such as through biosynthesis of siderophore group nonribosomal peptides, non-homologous end-joining, and glycosphingolipid biosynthesis of lacto and neolacto series, may maintain microbiota homeostasis during inflammation from IN treatment in DSS-induced colitis.
Collapse
|
20
|
Senés‐Guerrero C, Colón‐Contreras FA, Reynoso‐Lobo JF, Tinoco‐Pérez B, Siller‐Cepeda JH, Pacheco A. Biogas-producing microbial composition of an anaerobic digester and associated bovine residues. Microbiologyopen 2019; 8:e00854. [PMID: 31129926 PMCID: PMC6741126 DOI: 10.1002/mbo3.854] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/01/2019] [Accepted: 04/15/2019] [Indexed: 11/07/2022] Open
Abstract
Influenced by feedstock type and microbial inoculum, different microbial groups must precisely interact for high-quality biogas yields. As a first approach for optimization, this study aimed to identify through time the biogas-producing microbial community in a 10-ton dry anaerobic digester treating cattle manure by denaturing gradient gel electrophoresis (DGGE) and metagenomics. Moreover, the associated bovine residues or feedstocks (leachate, manure, oxidation lagoon water, rumen) were also characterized to determine their contribution. A diverse and dynamic community characterized by Bacteria (82%-88%) and a considerable amount of Archaea (8%-15%) presented profiles particular to each stage of biogas production. Eukaryotes (2.6%-3.6%), mainly fungi, were a minor but stable component. Proteobacteria represented 47% of the community at the start of the run but only 18% at the end, opposite to the Bacteroidetes/Chlorobi group (8% and 20%, respectively), while Firmicutes (12%-18%) and Actinobacteria (12%-32%) remained relatively constant. Methanogens of the order Methanomicrobiales represented by several species of Methanoculleus were abundant at the end of the run (77%) contrary to Methanosarcinales (11%) and Methanobacteriales (0.7%). Therefore, methanogenesis mainly occurred by the hydrogenotrophic pathway. Manure and oxidation lagoon water seemed to contribute key microorganisms, while rumen dominated by Methanobrevibacter (72%) did not proliferate in the digester. Manure particularly possessed Methanoculleus (24%) and uncultured methanogens identified by DGGE, whereas oxidation lagoon was exclusively abundant in Methanolinea (18%) and Methanosaeta (19%). Leachate, as the microbial inoculum from a previous run, adequately preserved the biogas-producing community. These results could lead to higher biogas yields through bioaugmentation strategies by incorporating higher proportions or an enriched inoculum from the relevant feedstocks.
Collapse
Affiliation(s)
- Carolina Senés‐Guerrero
- Tecnologico de Monterrey, Escuela de Ingenieria y CienciasCentro de Biotecnologia‐FEMSAMonterreyMexico
| | - Franco A. Colón‐Contreras
- Tecnologico de Monterrey, Escuela de Ingenieria y CienciasCentro de Biotecnologia‐FEMSAMonterreyMexico
| | | | | | | | - Adriana Pacheco
- Tecnologico de Monterrey, Escuela de Ingenieria y CienciasCentro de Biotecnologia‐FEMSAMonterreyMexico
| |
Collapse
|
21
|
A challenge in anaerobic digestion of swine wastewater: recalcitrance and enhanced-degradation of dietary fibres. Biodegradation 2019; 30:389-400. [PMID: 31123941 DOI: 10.1007/s10532-019-09879-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 05/12/2019] [Indexed: 10/26/2022]
Abstract
Dietary fibres are main substances in the pig's feed. Because of the recalcitrance, they could enter swine wastewater and become a serious obstruction factor for the anaerobic digestion process. In this work, three dietary fibres abundant in pig feedstocks: Wheat Bran Fibre (WBF), Alfalfa Fibre (AF) and Rice Chaff Fibre (RCF) were chosen and their anaerobic degradability was determined. The results showed that the biochemical methane potential in 10 days (BMP10) of WBF, AF and RCF was 258, 176 and 86 mL/g-VS, respectively. The size, purity, crystallinity, and lignin coating in particular, were found having influences on the anaerobic biodegradability of dietary fibres. To surprise, a negative rather than positive effect was observed for the direct addition of extraneous cellulase into the anaerobic digestion systems, leading to a longer lag time and a smaller BMP10. The enhancement was achieved for the addition of extraneous bacteria in the form of anaerobic granular sludge (AnGS), shortening the lag time of WBF and AF by 36% and 13%, respectively. By high-throughput sequencing analysis, abundant protein and amino acids degraders found in anaerobic activated sludge (AnAS) could degrade the exogenous enzymes. Abundant members affiliated to the family Anaerolineaceae, and Syntrophobacteraceae in AnGS, related to the cellulolytic and syntrophic activity respectively, probably contribute to the acceleration effect of AnGS.
Collapse
|
22
|
Wang F, Men X, Zhang G, Liang K, Xin Y, Wang J, Li A, Zhang H, Liu H, Wu L. Assessment of 16S rRNA gene primers for studying bacterial community structure and function of aging flue-cured tobaccos. AMB Express 2018; 8:182. [PMID: 30415449 PMCID: PMC6230335 DOI: 10.1186/s13568-018-0713-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 11/03/2018] [Indexed: 11/10/2022] Open
Abstract
Selection of optimal primer pairs in 16S rRNA gene sequencing is a pivotal issue in microorganism diversity analysis. However, limited effort has been put into investigation of specific primer sets for analysis of the bacterial diversity of aging flue-cured tobaccos (AFTs), as well as prediction of the function of the bacterial community. In this study, the performance of four primer pairs in determining bacterial community structure based on 16S rRNA gene sequences in AFTs was assessed, and the functions of genes were predicted using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt). Results revealed that the primer set 799F-1193R covering the amplification region V5V6V7 gave a more accurate picture of the bacterial community structure of AFTs, with lower co-amplification levels of chloroplast and mitochondrial genes, and more genera covered than when using the other primers. In addition, functional gene prediction suggested that the microbiome of AFTs was involved in kinds of interested pathways. A high abundance of functional genes involved in nitrogen metabolism was detected in AFTs, reflecting a high level of bacteria involved in degrading harmful nitrogen compounds and generating nitrogenous nutrients for others. Additionally, the functional genes involved in biosynthesis of valuable metabolites and degradation of toxic compounds provided information that the AFTs possess a huge library of microorganisms and genes that could be applied to further studies. All of these findings provide a significance reference for researchers working on the bacterial diversity assessment of tobacco-related samples.
Collapse
Affiliation(s)
- Fan Wang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiao Men
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Ge Zhang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Kaichao Liang
- Hainan Cigar Research Institute Hainan Provincial Branch of China National Tobacco Corporation, Haikou, 571100 Hainan China
| | - Yuhua Xin
- Hainan Cigar Research Institute Hainan Provincial Branch of China National Tobacco Corporation, Haikou, 571100 Hainan China
| | - Juan Wang
- Hainan Cigar Research Institute Hainan Provincial Branch of China National Tobacco Corporation, Haikou, 571100 Hainan China
| | - Aijun Li
- Hainan Cigar Research Institute Hainan Provincial Branch of China National Tobacco Corporation, Haikou, 571100 Hainan China
| | - Haibo Zhang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Haobao Liu
- Hainan Cigar Research Institute Hainan Provincial Branch of China National Tobacco Corporation, Haikou, 571100 Hainan China
- Tobacco Research Institute of Chinese Academy of Agriculture Sciences, Qingdao, 266101 Shandong China
| | - Lijun Wu
- Yunnan Academy of Tobacco Sciences, Kunming, 650106 China
| |
Collapse
|
23
|
Peces M, Astals S, Jensen PD, Clarke WP. Deterministic mechanisms define the long-term anaerobic digestion microbiome and its functionality regardless of the initial microbial community. WATER RESEARCH 2018; 141:366-376. [PMID: 29807319 DOI: 10.1016/j.watres.2018.05.028] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/16/2018] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
The impact of the starting inoculum on long-term anaerobic digestion performance, process functionality and microbial community composition remains unclear. To understand the impact of starting inoculum, active microbial communities from four different full-scale anaerobic digesters were each used to inoculate four continuous lab-scale anaerobic digesters, which were operated identically for 295 days. Digesters were operated at 15 days solid retention time, an organic loading rate of 1 g COD Lr-1 d-1 (75:25 - cellulose:casein) and 37 °C. Results showed that long-term process performance, metabolic rates (hydrolytic, acetogenic, and methanogenic) and microbial community are independent of the inoculum source. Digesters process performance converged after 80 days, while metabolic rates and microbial communities converged after 120-145 days. The convergence of the different microbial communities towards a core-community proves that the deterministic factors (process operational conditions) were a stronger driver than the initial microbial community composition. Indeed, the core-community represented 72% of the relative abundance among the four digesters. Moreover, a number of positive correlations were observed between higher metabolic rates and the relative abundance of specific microbial groups. These correlations showed that both substrate consumers and suppliers trigger higher metabolic rates, expanding the knowledge of the nexus between microorganisms and functionality. Overall, these results support that deterministic factors control microbial communities in bioreactors independently of the inoculum source. Hence, it seems plausible that a desired microbial composition and functionality can be achieved by tuning process operational conditions.
Collapse
Affiliation(s)
- M Peces
- Centre for Solid Waste Bioprocessing, Schools of Civil and Chemical Engineering, The University of Queensland, St. Lucia Campus, 4072, QLD, Australia.
| | - S Astals
- Advanced Water Management Centre, The University of Queensland, St. Lucia Campus, 4072, QLD, Australia
| | - P D Jensen
- Advanced Water Management Centre, The University of Queensland, St. Lucia Campus, 4072, QLD, Australia
| | - W P Clarke
- Centre for Solid Waste Bioprocessing, Schools of Civil and Chemical Engineering, The University of Queensland, St. Lucia Campus, 4072, QLD, Australia
| |
Collapse
|
24
|
Holmes I, Davis Rabosky AR. Natural history bycatch: a pipeline for identifying metagenomic sequences in RADseq data. PeerJ 2018; 6:e4662. [PMID: 29682427 PMCID: PMC5907781 DOI: 10.7717/peerj.4662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/03/2018] [Indexed: 01/04/2023] Open
Abstract
Background Reduced representation genomic datasets are increasingly becoming available from a variety of organisms. These datasets do not target specific genes, and so may contain sequences from parasites and other organisms present in the target tissue sample. In this paper, we demonstrate that (1) RADseq datasets can be used for exploratory analysis of tissue-specific metagenomes, and (2) tissue collections house complete metagenomic communities, which can be investigated and quantified by a variety of techniques. Methods We present an exploratory method for mining metagenomic “bycatch” sequences from a range of host tissue types. We use a combination of the pyRAD assembly pipeline, NCBI’s blastn software, and custom R scripts to isolate metagenomic sequences from RADseq type datasets. Results When we focus on sequences that align with existing references in NCBI’s GenBank, we find that between three and five percent of identifiable double-digest restriction site associated DNA (ddRAD) sequences from host tissue samples are from phyla to contain known blood parasites. In addition to tissue samples, we examine ddRAD sequences from metagenomic DNA extracted snake and lizard hind-gut samples. We find that the sequences recovered from these samples match with expected bacterial and eukaryotic gut microbiome phyla. Discussion Our results suggest that (1) museum tissue banks originally collected for host DNA archiving are also preserving valuable parasite and microbiome communities, (2) that publicly available RADseq datasets may include metagenomic sequences that could be explored, and (3) that restriction site approaches are a useful exploratory technique to identify microbiome lineages that could be missed by primer-based approaches.
Collapse
Affiliation(s)
- Iris Holmes
- Department of Ecology and Evolutionary Biology, University of Michigan Museum of Zoology, University of Michigan, Ann Arbor, MI, USA
| | - Alison R Davis Rabosky
- Department of Ecology and Evolutionary Biology, University of Michigan Museum of Zoology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
25
|
Inferring microbial interactions in thermophilic and mesophilic anaerobic digestion of hog waste. PLoS One 2017; 12:e0181395. [PMID: 28732056 PMCID: PMC5521784 DOI: 10.1371/journal.pone.0181395] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 07/02/2017] [Indexed: 11/19/2022] Open
Abstract
Anaerobic digestion (AnD) is a microbiological process that converts organic waste materials into biogas. Because of its high methane content, biogas is a combustible energy source and serves as an important environmental technology commonly used in the management of animal waste generated on large animal farms. Much work has been done on hardware design and process engineering for the generation of biogas. However, little is known about the complexity of the microbiology in this process. In particular, how microbes interact in the digester and eventually breakdown and convert organic matter into biogas is still regarded as a "black box." We used 16S rRNA sequencing as a tool to study the microbial community in laboratory hog waste digesters under tightly controlled conditions, and systematically unraveled the distinct interaction networks of two microbial communities from mesophilic (MAnD) and thermophilic anaerobic digestion (TAnD). Under thermophilic conditions, the well-known association between hydrogen-producing bacteria, e.g., Ruminococcaceae and Prevotellaceae, and hydrotrophic methanogens, Methanomicrobiaceae, was reverse engineered by their interactive topological niches. The inferred interaction network provides a sketch enabling the determination of microbial interactive relationships that conventional strategy of finding differential taxa was hard to achieve. This research is still in its infancy, but it can help to depict the dynamics of microbial ecosystems and to lay the groundwork for understanding how microorganisms cohabit in the anaerobic digester.
Collapse
|
26
|
Mosbæk F, Kjeldal H, Mulat DG, Albertsen M, Ward AJ, Feilberg A, Nielsen JL. Identification of syntrophic acetate-oxidizing bacteria in anaerobic digesters by combined protein-based stable isotope probing and metagenomics. THE ISME JOURNAL 2016; 10:2405-18. [PMID: 27128991 PMCID: PMC5030692 DOI: 10.1038/ismej.2016.39] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/22/2016] [Accepted: 02/02/2016] [Indexed: 12/31/2022]
Abstract
Inhibition of anaerobic digestion through accumulation of volatile fatty acids occasionally occurs as the result of unbalanced growth between acidogenic bacteria and methanogens. A fast recovery is a prerequisite for establishing an economical production of biogas. However, very little is known about the microorganisms facilitating this recovery. In this study, we investigated the organisms involved by a novel approach of mapping protein-stable isotope probing (protein-SIP) onto a binned metagenome. Under simulation of acetate accumulation conditions, formations of (13)C-labeled CO2 and CH4 were detected immediately following incubation with [U-(13)C]acetate, indicating high turnover rate of acetate. The identified (13)C-labeled peptides were mapped onto a binned metagenome for improved identification of the organisms involved. The results revealed that Methanosarcina and Methanoculleus were actively involved in acetate turnover, as were five subspecies of Clostridia. The acetate-consuming organisms affiliating with Clostridia all contained the FTFHS gene for formyltetrahydrofolate synthetase, a key enzyme for reductive acetogenesis, indicating that these organisms are possible syntrophic acetate-oxidizing (SAO) bacteria that can facilitate acetate consumption via SAO, coupled with hydrogenotrophic methanogenesis (SAO-HM). This study represents the first study applying protein-SIP for analysis of complex biogas samples, a promising method for identifying key microorganisms utilizing specific pathways.
Collapse
Affiliation(s)
- Freya Mosbæk
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Henrik Kjeldal
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Daniel G Mulat
- Department of Engineering, Aarhus University, Aarhus, Denmark
| | - Mads Albertsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Alastair J Ward
- Department of Engineering, Aarhus University, Aarhus, Denmark
| | - Anders Feilberg
- Department of Engineering, Aarhus University, Aarhus, Denmark
| | - Jeppe L Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
27
|
Cerrillo M, Viñas M, Bonmatí A. Overcoming organic and nitrogen overload in thermophilic anaerobic digestion of pig slurry by coupling a microbial electrolysis cell. BIORESOURCE TECHNOLOGY 2016; 216:362-372. [PMID: 27259192 DOI: 10.1016/j.biortech.2016.05.085] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 06/05/2023]
Abstract
The combination of the anaerobic digestion (AD) process with a microbial electrolysis cell (MEC) coupled to an ammonia stripping unit as a post-treatment was assessed both in series operation, to improve the quality of the effluent, and in loop configuration recirculating the effluent, to increase the AD robustness. The MEC allowed maintaining the chemical oxygen demand removal of the whole system of 46±5% despite the AD destabilization after doubling the organic and nitrogen loads, while recovering 40±3% of ammonia. The AD-MEC system, in loop configuration, helped to recover the AD (55% increase in methane productivity) and attained a more stable and robust operation. The microbial population assessment revealed an enhancement of AD methanogenic archaea numbers and a shift in eubacterial population. The AD-MEC combined system is a promising strategy for stabilizing AD against organic and nitrogen overloads, while improving the quality of the effluent and recovering nutrients for their reutilization.
Collapse
Affiliation(s)
- Míriam Cerrillo
- IRTA, GIRO Joint Research Unit IRTA-UPC, Torre Marimon, E-08140, Caldes de Montbui, Barcelona, Spain.
| | - Marc Viñas
- IRTA, GIRO Joint Research Unit IRTA-UPC, Torre Marimon, E-08140, Caldes de Montbui, Barcelona, Spain.
| | - August Bonmatí
- IRTA, GIRO Joint Research Unit IRTA-UPC, Torre Marimon, E-08140, Caldes de Montbui, Barcelona, Spain.
| |
Collapse
|
28
|
Li L, Liu M, Li Y, Ma X, Tang X, Li Z. Changes in dissolved organic matter composition and metabolic diversity of bacterial community during the degradation of organic matter in swine effluent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:13498-13507. [PMID: 27030235 DOI: 10.1007/s11356-016-6536-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 03/21/2016] [Indexed: 06/05/2023]
Abstract
In this study, an incubation experiment was conducted with effluent collected from the concentrated swine-feeding operations (CSFOs) located in Yujiang County of Jiangxi Province, China. The purpose of this study was to elucidate the relationships between the composition of dissolved organic matter (DOM) and the community-level physiological profiles (CLPPs) of microorganisms in swine effluent. For all samples examined, the concentrations of dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) were decreased by an average of 58.2 ± 30.4 and 49.2 ± 38.7 %, whereas total dissolved phosphorus (TDP) exhibited an average final accumulation of 141.5 ± 43.0 %. In the original samples, ammonium nitrogen accounted for 88.9 ± 4.9 % of the TDN, which was reduced to a final average of 83.9 ± 9.6 %. Two protein-like (tyrosine and tryptophan) and two humic-like (fulvic acids and humic acids) components were identified using a three-dimensional excitation-emission matrix. With the increase in incubation time, the relative concentrations of two protein-like components in effluent were reduced by an average of 83.2 ± 24.7 %. BIOLOG(™) ECO plates were used to determine the metabolic fingerprint of the bacterial community, and a shift in the utilization patterns of substrates was observed over the study period. Additionally, the Shannon-Wiener index of CLPP was ultimately reduced by an average of 43.5 ± 8.5 %, corresponding to the metabolic diversity of the bacterial community. The redundancy analysis identified significant relationships between environmental parameters and the CLPP of microorganisms. To a certain degree, the DOM compositions were linked with the substrate utilization patterns of the bacterial community during the degradation of organic matter in swine effluent.
Collapse
Affiliation(s)
- Lei Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing, 210008, China
| | - Ming Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing, 210008, China
| | - Yanli Li
- Key Laboratory of Soil Environment and Pollution, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing, 210008, China
| | - Xiaoyan Ma
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing, 210008, China
| | - Xiaoxue Tang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing, 210008, China
| | - Zhongpei Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing, 210008, China.
| |
Collapse
|
29
|
Stolze Y, Bremges A, Rumming M, Henke C, Maus I, Pühler A, Sczyrba A, Schlüter A. Identification and genome reconstruction of abundant distinct taxa in microbiomes from one thermophilic and three mesophilic production-scale biogas plants. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:156. [PMID: 27462367 PMCID: PMC4960831 DOI: 10.1186/s13068-016-0565-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/12/2016] [Indexed: 05/19/2023]
Abstract
BACKGROUND Biofuel production from conversion of biomass is indispensable in the portfolio of renewable energies. Complex microbial communities are involved in the anaerobic digestion process of plant material, agricultural residual products and food wastes. Analysis of the genetic potential and microbiology of communities degrading biomass to biofuels is considered to be the key to develop process optimisation strategies. Hence, due to the still incomplete taxonomic and functional characterisation of corresponding communities, new and unknown species are of special interest. RESULTS Three mesophilic and one thermophilic production-scale biogas plants (BGPs) were taxonomically profiled using high-throughput 16S rRNA gene amplicon sequencing. All BGPs shared a core microbiome with the thermophilic BGP featuring the lowest diversity. However, the phyla Cloacimonetes and Spirochaetes were unique to BGPs 2 and 3, Fusobacteria were only found in BGP3 and members of the phylum Thermotogae were present only in the thermophilic BGP4. Taxonomic analyses revealed that these distinctive taxa mostly represent so far unknown species. The only exception is the dominant Thermotogae OTU featuring 16S rRNA gene sequence identity to Defluviitoga tunisiensis L3, a sequenced and characterised strain. To further investigate the genetic potential of the biogas communities, corresponding metagenomes were sequenced in a deepness of 347.5 Gbp in total. A combined assembly comprised 80.3 % of all reads and resulted in the prediction of 1.59 million genes on assembled contigs. Genome binning yielded genome bins comprising the prevalent distinctive phyla Cloacimonetes, Spirochaetes, Fusobacteria and Thermotogae. Comparative genome analyses between the most dominant Thermotogae bin and the very closely related Defluviitoga tunisiensis L3 genome originating from the same BGP revealed high genetic similarity. This finding confirmed applicability and reliability of the binning approach. The four highly covered genome bins of the other three distinct phyla showed low or very low genetic similarities to their closest phylogenetic relatives, and therefore indicated their novelty. CONCLUSIONS In this study, the 16S rRNA gene sequencing approach and a combined metagenome assembly and binning approach were used for the first time on different production-scale biogas plants and revealed insights into the genetic potential and functional role of so far unknown species.
Collapse
Affiliation(s)
- Yvonne Stolze
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Andreas Bremges
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
- Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany
| | - Madis Rumming
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
- Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany
| | - Christian Henke
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
- Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany
| | - Irena Maus
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Alfred Pühler
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Alexander Sczyrba
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
- Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany
| | - Andreas Schlüter
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
30
|
Beale DJ, Karpe AV, McLeod JD, Gondalia SV, Muster TH, Othman MZ, Palombo EA, Joshi D. An 'omics' approach towards the characterisation of laboratory scale anaerobic digesters treating municipal sewage sludge. WATER RESEARCH 2016; 88:346-357. [PMID: 26512813 DOI: 10.1016/j.watres.2015.10.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 10/12/2015] [Accepted: 10/17/2015] [Indexed: 06/05/2023]
Abstract
In this study, laboratory scale digesters were operated to simulate potential shocks to the Anaerobic Digestion (AD) process at a 350 ML/day wastewater treatment plant. The shocks included high (42 °C) and low (32 °C) temperature (either side of mesophilic 37 °C) and a 20% loading of fats, oil and grease (FOG; 20% w:v). These variables were explored at two sludge retention times (12 and 20 days) and two organic loading rates (2.0 and 2.5 kgTS/m(3)day OLR). Metagenomic and metabolomic approaches were then used to characterise the impact of operational shocks in regard to temperature and FOG addition, as determined through monitoring of biogas production, the microbial profile and their metabolism. Results showed that AD performance was not greatly affected by temperature shocks, with the biggest impact being a reduction in biogas production at 42 °C that persisted for 32 ± 1 days. The average biogas production across all digesters at the completion of the experiment was 264.1 ± 76.5 mL/day, with FOG addition observed to significantly promote biogas production (+87.8 mL/day). Metagenomic and metabolomic analyses of the digesters indicated that methanogens and methane oxidising bacteria (MOB) were low in relative abundance, and that the ratio of oxidising bacteria (methane, sulphide and sulphate) with respect to sulphate reducing bacteria (SRB) had a noticeable influence on biogas production. Furthermore, increased biogas production correlated with an increase in short chain fatty acids, a product of the addition of 20% FOG. This work demonstrates the application of metagenomics and metabolomics to characterise the microbiota and their metabolism in AD digesters, providing insight to the resilience of crucial microbial populations when exposed to operational shocks.
Collapse
Affiliation(s)
- D J Beale
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, PO Box 2583, Brisbane, Queensland 4001, Australia.
| | - A V Karpe
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, PO Box 2583, Brisbane, Queensland 4001, Australia; Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, Victoria 3122, Australia
| | - J D McLeod
- School of Civil, Environmental and Chemical Engineering, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - S V Gondalia
- Centre for Human Psychopharmacology, Faculty of Health, Arts and Design, Swinburne University of Technology, PO Box 218, Hawthorn, Victoria 3122, Australia
| | - T H Muster
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, PO Box 2583, Brisbane, Queensland 4001, Australia
| | - M Z Othman
- School of Civil, Environmental and Chemical Engineering, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - E A Palombo
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, Victoria 3122, Australia
| | - D Joshi
- Melbourne Water, PO Box 4342, Melbourne, Victoria 3001, Australia
| |
Collapse
|
31
|
Wang H, Tao Y, Gao D, Liu G, Chen C, Ren N, van Lier JB, de Kreuk M. Microbial population dynamics in response to increasing loadings of pre-hydrolyzed pig manure in an expanded granular sludge bed. WATER RESEARCH 2015; 87:29-37. [PMID: 26378729 DOI: 10.1016/j.watres.2015.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 08/26/2015] [Accepted: 09/05/2015] [Indexed: 06/05/2023]
Abstract
In recent years, pig manure (PM) has been regarded as a valuable substrate for energy and resource recovery via bioprocesses such as anaerobic digestion (AD), however, the efficiency of digesting raw PM is limited by the presence of refractory compounds. In this study, we applied a series of pretreatment on raw PM, consisting of subsequent thermochemical pretreatment, enzymatic hydrolysis, tyndallization and filtration. The liquid PM hydrolysates were fed to an expanded granular sludge bed (EGSB) for the production of biogas. The general performance and population dynamics of the EGSB reactor were assessed during an extended operational period of 339 days. An efficient and stable digestion process was achieved under high organic loading rates (OLRs) up to 21 kg-COD/(m(3)·d), agreeing with a sludge loading rate of 0.75 kg-COD/(kg-VSS·d), 1600 mg-NH4(+)-N/L and 17 mg/L of free ammonia nitrogen. The tyndallization decreased the total amount of active cells from 1 × 10(8) to 1 × 10(2) CFU/ml. Hence, bio-augmentation with pigs' intestinal microbiota was absent and the community dynamics were mainly credited to the composition of the substrate (i.e. PM hydrolysates) and the environmental conditions inside the reactor. The results showed the influence of both the seed community and the imposed loading rates on the evolutionary trajectory of the EGSB microbial community. Four bacterial genera (Clostridium, Cytophaga, Bacillus and Bacteroides) and two methanogenic genera (Methanosaeta and Methanobacterium) dominated the communities. An obvious shift from aceticlastic Methanosaeta to hydrogenotrophic Methanobacterium appeared when the OLR was increased to over 10 kg-COD/(m(3)·d).
Collapse
Affiliation(s)
- Haoyu Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, Harbin, China; Section of Sanitary Engineering, Department of Water Management, Delft University of Technology, 2628, CN Delft, The Netherlands
| | - Yu Tao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, Harbin, China; Section of Sanitary Engineering, Department of Water Management, Delft University of Technology, 2628, CN Delft, The Netherlands; Department of Chemical Engineering, Imperial College London, South Kensington Campus, SW7 2AZ, UK
| | - Dawen Gao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, Harbin, China
| | - Gang Liu
- Section of Sanitary Engineering, Department of Water Management, Delft University of Technology, 2628, CN Delft, The Netherlands
| | - Chunhong Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, Harbin, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, Harbin, China.
| | - Jules B van Lier
- Section of Sanitary Engineering, Department of Water Management, Delft University of Technology, 2628, CN Delft, The Netherlands
| | - Merle de Kreuk
- Section of Sanitary Engineering, Department of Water Management, Delft University of Technology, 2628, CN Delft, The Netherlands
| |
Collapse
|
32
|
Nordgård A, Bergland W, Bakke R, Vadstein O, Østgaard K, Bakke I. Microbial community dynamics and biogas production from manure fractions in sludge bed anaerobic digestion. J Appl Microbiol 2015; 119:1573-83. [DOI: 10.1111/jam.12952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/02/2015] [Accepted: 09/04/2015] [Indexed: 11/29/2022]
Affiliation(s)
- A.S.R. Nordgård
- Department of Biotechnology; Norwegian University of Science and Technology (NTNU); Trondheim Norway
| | - W.H. Bergland
- Department of Process, Energy and Environmental Technology; Telemark University College (TUC); Porsgrunn Norway
| | - R. Bakke
- Department of Process, Energy and Environmental Technology; Telemark University College (TUC); Porsgrunn Norway
| | - O. Vadstein
- Department of Biotechnology; Norwegian University of Science and Technology (NTNU); Trondheim Norway
| | - K. Østgaard
- Department of Biotechnology; Norwegian University of Science and Technology (NTNU); Trondheim Norway
| | - I. Bakke
- Department of Biotechnology; Norwegian University of Science and Technology (NTNU); Trondheim Norway
| |
Collapse
|