1
|
Li P, Fu Z, Wang M, Yang T, Li Y, Ma D. Functional Characterization of FgAsp, a Gene Coding an Aspartic Acid Protease in Fusarium graminearum. J Fungi (Basel) 2024; 10:879. [PMID: 39728375 DOI: 10.3390/jof10120879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/30/2024] [Accepted: 12/08/2024] [Indexed: 12/28/2024] Open
Abstract
Aspartic proteases (APs), hydrolases with aspartic acid residues as catalytic active sites, are closely associated with processes such as plant growth and development and fungal and bacterial pathogenesis. F. graminearum is the dominant pathogenic fungus that causes Fusarium head blight (FHB) in wheat. However, the relationship of APs to the growth, development, and pathogenesis of F. graminearum is not clear. Therefore, we selected the FGSG_09558 gene, whose function annotation is aspartate protease, for further study. In this study, FGSG_09558 was found to contain a conserved structural domain and signal peptide sequence of aspartic acid protease and was therefore named FgAsp. The function of FgAsp in F. graminearum was investigated by constructing the knockout and complementation mutants of this gene. The results showed that with respect to the wild type (PH-1), the knockout mutant showed a significant reduction in mycelial growth, asexual spore production, and sexual spore formation, highlighting the key role of FgAsp in the growth and development of F. graminearum. In addition, the mutants showed a significant reduction in the virulence and accumulation level of deoxynivalenol (DON) content on maize whiskers, wheat germ sheaths, and wheat ears. DON, as a key factor of virulence, plays an important role in the F. graminearum infection of wheat ears, suggesting that FgAsp is involved in the regulation of F. graminearum pathogenicity by affecting the accumulation of the DON toxin. FgAsp had a significant effect on the ability of F. graminearum to utilize various sugars, especially arabinose. In response to the stress, hydrogen peroxide inhibited the growth of the mutant most significantly, indicating the important function of FgAsp in the strain's response to environmental stress. Finally, FgAsp plays a key role in the regulation of F. graminearum growth and development, pathogenicity, and environmental stress response.
Collapse
Affiliation(s)
- Ping Li
- Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Zhizhen Fu
- Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Mengru Wang
- Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Tian Yang
- Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Yan Li
- Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Dongfang Ma
- Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China
| |
Collapse
|
2
|
Liu B, Han J, Zhang H, Li Y, An Y, Ji S, Liu Z. The regulatory pathway of transcription factor MYB36 from Trichoderma asperellum Tas653 resistant to poplar leaf blight pathogen Alternaria alternata Aal004. Microbiol Res 2024; 282:127637. [PMID: 38382286 DOI: 10.1016/j.micres.2024.127637] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/23/2024]
Abstract
In fungi, MYB transcription factors (TFs) mainly regulate growth, development, and resistance to stress. However, as major disease-resistance TFs, they have rarely been studied in biocontrol fungi. In this study, MYB36 of Trichoderma asperellum Tas653 (Ta) was shown to respond strongly to the stress caused by Alternaria alternata Aa1004. Compared with wild-type Ta (Ta-Wt), the inhibition rate of the MYB36 knockout strain (Ta-Kn) on Aa1004 decreased by 11.06%; the superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities decreased by 82.15 U/g, 0.19 OD470/min/g, and 1631.2 μmol/min/g, respectively. The MYB36 overexpression strain (Ta-Oe) not only enhanced hyperparasitism on Aa1004, caused its hyphae to swell, deform, or even rupture, but also reduced the incidence rate of poplar leaf blight. MYB36 regulates downstream (TFs, detoxification genes, defense genes, and other antifungal-related genes by binding to the cis-acting elements "ACAT" and "ATCG". Zinc finger TFs, as the main antifungal TFs, account for 90% of the total TFs, and Zn37.5 (23.24-) and Zn83.7 (23.18-fold) showed the greatest expression difference when regulated directly by MYB36. The detoxification genes mainly comprised 11 major major facilitator superfamily (MFS) genes, among which MYB36 directly increased the expression levels of three genes by more than 2-3.44-fold. The defense genes mainly encoded cytochrome P450 (P450) and hydrolases. e.g., P45061.3 (2-10.95-), P45060.2 (2-7.07-), and Hyd44.6 (2-2.30-fold). This study revealed the molecular mechanism of MYB36 regulation of the resistance of T. asperellum to A. alternata and provides theoretical guidance for the biocontrol of poplar leaf blight and the anti-disease mechanism of biocontrol fungi.
Collapse
Affiliation(s)
- Bin Liu
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
| | - Jing Han
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
| | - Huifang Zhang
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China; Modern Agricultural Industry Research Institute of Henan Zhoukou National Agricultural High-tech Industry Demonstration Zone, Zhoukou Normal University, Henan 466000, China
| | - Yuxiao Li
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
| | - Yibo An
- National Forestry and Grassland National Reserve Forest Engineering Technology Research Center, Chongqing Forestry Investment and Development Co., Ltd., Chongqing 401120, China
| | - Shida Ji
- Horticultural College of Shenyang Agricultural University, Shenyang 110866, China
| | - Zhihua Liu
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
3
|
Herman RA, Ayepa E, Zhang WX, Li ZN, Zhu X, Ackah M, Yuan SS, You S, Wang J. Molecular modification and biotechnological applications of microbial aspartic proteases. Crit Rev Biotechnol 2024; 44:388-413. [PMID: 36842994 DOI: 10.1080/07388551.2023.2171850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/13/2022] [Accepted: 01/07/2023] [Indexed: 02/28/2023]
Abstract
The growing preference for incorporating microbial aspartic proteases in industries is due to their high catalytic function and high degree of substrate selectivity. These properties, however, are attributable to molecular alterations in their structure and a variety of other characteristics. Molecular tools, functional genomics, and genome editing technologies coupled with other biotechnological approaches have aided in improving the potential of industrially important microbial proteases by addressing some of their major limitations, such as: low catalytic efficiency, low conversion rates, low thermostability, and less enzyme yield. However, the native folding within their full domain is dependent on a surrounding structure which challenges their functionality in substrate conversion, mainly due to their mutual interactions in the context of complex systems. Hence, manipulating their structure and controlling their expression systems could potentially produce enzymes with high selectivity and catalytic functions. The proteins produced by microbial aspartic proteases are industrially capable and far-reaching in regulating certain harmful distinctive industrial processes and the benefits of being eco-friendly. This review provides: an update on current trends and gaps in microbial protease biotechnology, exploring the relevant recombinant strategies and molecular technologies widely used in expression platforms for engineering microbial aspartic proteases, as well as their potential industrial and biotechnological applications.
Collapse
Affiliation(s)
- Richard Ansah Herman
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, P. R. China
| | - Ellen Ayepa
- Oil Palm Research Institute, Council for Scientific and Industrial Research, Kusi, Ghana
| | - Wen-Xin Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
| | - Zong-Nan Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
| | - Xuan Zhu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
| | - Michael Ackah
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
| | - Shuang-Shuang Yuan
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
| | - Shuai You
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, P.R. China
| | - Jun Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, P.R. China
| |
Collapse
|
4
|
Morán-Diez ME, Martínez de Alba ÁE, Rubio MB, Hermosa R, Monte E. Trichoderma and the Plant Heritable Priming Responses. J Fungi (Basel) 2021; 7:jof7040318. [PMID: 33921806 PMCID: PMC8072925 DOI: 10.3390/jof7040318] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 01/08/2023] Open
Abstract
There is no doubt that Trichoderma is an inhabitant of the rhizosphere that plays an important role in how plants interact with the environment. Beyond the production of cell wall degrading enzymes and metabolites, Trichoderma spp. can protect plants by inducing faster and stronger immune responses, a mechanism known as priming, which involves enhanced accumulation of dormant cellular proteins that function in intracellular signal amplification. One example of these proteins is the mitogen-activated protein kinases (MAPK) that are triggered by the rise of cytosolic calcium levels and cellular redox changes following a stressful challenge. Transcription factors such as WRKYs, MYBs, and MYCs, play important roles in priming as they act as regulatory nodes in the transcriptional network of systemic defence after stress recognition. In terms of long-lasting priming, Trichoderma spp. may be involved in plants epigenetic regulation through histone modifications and replacements, DNA (hypo)methylation, and RNA-directed DNA methylation (RdDM). Inheritance of these epigenetic marks for enhanced resistance and growth promotion, without compromising the level of resistance of the plant’s offspring to abiotic or biotic stresses, seems to be an interesting path to be fully explored.
Collapse
|
5
|
|
6
|
Yu W, Mijiti G, Huang Y, Fan H, Wang Y, Liu Z. Functional analysis of eliciting plant response protein Epl1-Tas from Trichoderma asperellum ACCC30536. Sci Rep 2018; 8:7974. [PMID: 29789617 PMCID: PMC5964103 DOI: 10.1038/s41598-018-26328-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 05/09/2018] [Indexed: 12/11/2022] Open
Abstract
Eliciting plant response protein (Epl) is a small Trichoderma secreted protein that acts as an elicitor to induce plant defense responses against pathogens. In the present study, the differential expression, promoter analysis, and phylogenetic tree analysis of Epl1-Tas (GenBank JN966996) from T. asperellum ACCC30536 were performed. The results showed Epl1-Tas could play an important role in the interaction between T. asperellum ACCC30536 and woody plant or woody plant pathogen. Furthermore, the effect of the Escherichia coli recombinant protein rEpl1-e and the Pichia pastoris recombinant protein rEpl1-p on Populus davidiana × P. alba var. pyramidalis (PdPap) was studied. In PdPap seedlings, rEpl1-e or rEpl1-p induction altered the expression levels of 11 genes in the salicylic acid (SA, three genes), jasmonic acid (JA, four genes) and auxin (four genes) signal transduction pathways, and five kinds of enzymes activities The induction level of rEpl1-p was significantly higher than that of rEpl1-e, indicating that rEpl1-p could be used for further induction experiment. Under 3 mg/mL rEpl1-p induction, the mean height of the PdPap seedlings increased by 57.65% and the mean lesion area on the PdPap seedlings leaves challenged with Alternaria alternata decreased by 91.22% compared with those of the control. Thus, elicitor Epl1-Tas could induce the woody plant resistance to pathogen.
Collapse
Affiliation(s)
- Wenjing Yu
- School of Forestry, Northeast Forestry University, 26 Hexing Road, 150040, Harbin, China.,Forestry Protection Institute, Heilongjiang academy of Forestry, 134 Haping Road, 150040, Harbin, China
| | - Gulijimila Mijiti
- School of Forestry, Northeast Forestry University, 26 Hexing Road, 150040, Harbin, China
| | - Ying Huang
- School of Forestry, Northeast Forestry University, 26 Hexing Road, 150040, Harbin, China
| | - Haijuan Fan
- School of Forestry, Northeast Forestry University, 26 Hexing Road, 150040, Harbin, China
| | - Yucheng Wang
- School of Forestry, Northeast Forestry University, 26 Hexing Road, 150040, Harbin, China
| | - Zhihua Liu
- School of Forestry, Northeast Forestry University, 26 Hexing Road, 150040, Harbin, China.
| |
Collapse
|
7
|
Deng JJ, Huang WQ, Li ZW, Lu DL, Zhang Y, Luo XC. Biocontrol activity of recombinant aspartic protease from Trichoderma harzianum against pathogenic fungi. Enzyme Microb Technol 2018; 112:35-42. [PMID: 29499778 DOI: 10.1016/j.enzmictec.2018.02.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 12/27/2022]
Abstract
The use of cell wall degrading enzymes of Trichoderma is a promising alternative for improving food storage. The aspartic protease P6281 secreted by the fungus Trichoderma harzianum plays an important role in mycoparasitism on phytopathogenic fungi. In this study, recombinant P6281 (rP6281) expressed in Pichia pastoris showed high activity of 321.8 U/mL. Maximum activity was observed at pH 2.5 and 40 °C, and the enzyme was stable in the pH range of 2.5-6.0. rP6281 significantly inhibited spore germination and growth of plant and animal pathogenic fungi such as Botrytis cinerea, Mucor circinelloides, Aspergillus fumigatus, Aspergillus flavus, Rhizoctonia solani, and Candida albicans. Transmission electron microscopy revealed that rP6281 efficiently damages the cell wall of Botrytis cinerea. In addition, the protease significantly inhibited the development of grey mold that causes rotting of apple, orange, and cucumber, indicating that rP6281 may be developed as an effective anti-mold agent for fruit storage.
Collapse
Affiliation(s)
- Jun-Jin Deng
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, Guangdong, 510006, PR China
| | - Wei-Qian Huang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, Guangdong, 510006, PR China
| | - Zhi-Wei Li
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, Guangdong, 510006, PR China
| | - De-Lin Lu
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, Guangdong, 510006, PR China
| | - Yuanyuan Zhang
- Department of Food and Bioengineering, Guangdong Industry Technical College, Guangzhou, 510300, China
| | - Xiao-Chun Luo
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, Guangdong, 510006, PR China.
| |
Collapse
|
8
|
Zhang H, Wang NA, Wang Y, Wang J, Zheng H, Liu Z. Subtilisin-like serine protease gene TghSS42 from Trichoderma ghanense ACCC 30153 was successfully expressed in Escherichia coli and recombinant protease rTghSS42 exhibited antifungal ability to five phytopathogens. Biocontrol Sci 2017; 22:145-152. [PMID: 28954957 DOI: 10.4265/bio.22.145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The subtilisin-like serine protease gene TghSS42 was cloned from biocontrol agent Trichoderma ghanense ACCC 30153. Its coding region is 1302 bp in length, encoding 433 aa with a predicted protein molecular weight of 42.5 kDa and pI of 5.53. The accession number of cDNA sequence of TghSS42 gene is KJ740359. Furthermore, the transcription of the TghSS42 gene was all up-regulated under nine different treatments by RT-qPCR analysis, and the highest transcription level of TghSS42 approached 177.29-fold at 4 h under induction with 1% (w/v) Alternaria alternata cell walls, indicating that TghSS42 could be induced by the plant or phytopathogen. Furthermore, Escherichia coli recombinant strain BL21-TghSS42 was constructed. The recombinant protease rTghSS42, with an expected molecular weight of approximately 68.5 kDa (containing 26.0 kDa GST tag), has been successfully expressed and purified from BL21-TghSS42. The purified protease rTghSS42 activity reached a peak of 18.7 U/mL at 4 h following 1.0 mM IPTG induction. The optimal enzyme reaction temperature was 40℃ and the optimal pH was 7.0. The recombinant protease rTghSS42 exerted broad-spectrum antifungal ability against Rhizoctonia solani, Fusarium oxysporum, A. alternata, Sclerotinia sclerotiorum and Cytospora chrysosperma. The inhibition rate of mycelial growth varied between 21.2% and 50.0%.
Collapse
Affiliation(s)
- Huifang Zhang
- State Key Laboratory of Tree Genetics Breeding, Northeast Forestry University
| | - N A Wang
- State Key Laboratory of Tree Genetics Breeding, Northeast Forestry University
| | - Yucheng Wang
- State Key Laboratory of Tree Genetics Breeding, Northeast Forestry University
| | - Jinjie Wang
- School of Forestry, Northeast Forestry University
| | - Hong Zheng
- School of Forestry, Northeast Forestry University
| | - Zhihua Liu
- School of Forestry, Northeast Forestry University
| |
Collapse
|
9
|
Sharma V, Salwan R, Sharma PN, Gulati A. Integrated Translatome and Proteome: Approach for Accurate Portraying of Widespread Multifunctional Aspects of Trichoderma. Front Microbiol 2017; 8:1602. [PMID: 28900417 PMCID: PMC5581810 DOI: 10.3389/fmicb.2017.01602] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/07/2017] [Indexed: 12/31/2022] Open
Abstract
Genome-wide studies of transcripts expression help in systematic monitoring of genes and allow targeting of candidate genes for future research. In contrast to relatively stable genomic data, the expression of genes is dynamic and regulated both at time and space level at different level in. The variation in the rate of translation is specific for each protein. Both the inherent nature of an mRNA molecule to be translated and the external environmental stimuli can affect the efficiency of the translation process. In biocontrol agents (BCAs), the molecular response at translational level may represents noise-like response of absolute transcript level and an adaptive response to physiological and pathological situations representing subset of mRNAs population actively translated in a cell. The molecular responses of biocontrol are complex and involve multistage regulation of number of genes. The use of high-throughput techniques has led to rapid increase in volume of transcriptomics data of Trichoderma. In general, almost half of the variations of transcriptome and protein level are due to translational control. Thus, studies are required to integrate raw information from different “omics” approaches for accurate depiction of translational response of BCAs in interaction with plants and plant pathogens. The studies on translational status of only active mRNAs bridging with proteome data will help in accurate characterization of only a subset of mRNAs actively engaged in translation. This review highlights the associated bottlenecks and use of state-of-the-art procedures in addressing the gap to accelerate future accomplishment of biocontrol mechanisms.
Collapse
Affiliation(s)
- Vivek Sharma
- Department of Plant Pathology, Choudhary Sarwan Kumar Himachal Pradesh Agricultural UniversityPalampur, India
| | - Richa Salwan
- Department of Veterinary Microbiology, Choudhary Sarwan Kumar Himachal Pradesh Agricultural UniversityPalampur, India
| | - P N Sharma
- Department of Plant Pathology, Choudhary Sarwan Kumar Himachal Pradesh Agricultural UniversityPalampur, India
| | - Arvind Gulati
- Institute of Himalayan Bioresource TechnologyPalampur, India
| |
Collapse
|
10
|
Sharma V, Salwan R, Sharma PN. Differential Response of Extracellular Proteases of Trichoderma Harzianum Against Fungal Phytopathogens. Curr Microbiol 2016; 73:419-425. [DOI: 10.1007/s00284-016-1072-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/20/2016] [Indexed: 10/21/2022]
|
11
|
Dabhade AR, Mokashe NU, Patil UK. Purification, characterization, and antimicrobial activity of nontoxic trypsin inhibitor from Albizia amara Boiv. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.02.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Zhang J, Bayram Akcapinar G, Atanasova L, Rahimi MJ, Przylucka A, Yang D, Kubicek CP, Zhang R, Shen Q, Druzhinina IS. The neutral metallopeptidase NMP1 ofTrichoderma guizhouenseis required for mycotrophy and self-defence. Environ Microbiol 2015; 18:580-97. [DOI: 10.1111/1462-2920.12966] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 06/18/2015] [Accepted: 06/20/2015] [Indexed: 11/26/2022]
Affiliation(s)
- Jian Zhang
- Jiangsu Key Lab for Organic Waste Utilization and National Engineering Research Center for Organic-based Fertilizers; Nanjing Agricultural University; Nanjing China
| | - Gunseli Bayram Akcapinar
- Microbiology Group; Research Area Biotechnology and Microbiology; Institute of Chemical Engineering; Vienna University of Technology; Vienna Austria
| | - Lea Atanasova
- Microbiology Group; Research Area Biotechnology and Microbiology; Institute of Chemical Engineering; Vienna University of Technology; Vienna Austria
| | - Mohammad Javad Rahimi
- Microbiology Group; Research Area Biotechnology and Microbiology; Institute of Chemical Engineering; Vienna University of Technology; Vienna Austria
| | | | - Dongqing Yang
- Jiangsu Key Lab for Organic Waste Utilization and National Engineering Research Center for Organic-based Fertilizers; Nanjing Agricultural University; Nanjing China
| | - Christian P. Kubicek
- Microbiology Group; Research Area Biotechnology and Microbiology; Institute of Chemical Engineering; Vienna University of Technology; Vienna Austria
| | - Ruifu Zhang
- Jiangsu Key Lab for Organic Waste Utilization and National Engineering Research Center for Organic-based Fertilizers; Nanjing Agricultural University; Nanjing China
| | - Qirong Shen
- Jiangsu Key Lab for Organic Waste Utilization and National Engineering Research Center for Organic-based Fertilizers; Nanjing Agricultural University; Nanjing China
| | - Irina S. Druzhinina
- Microbiology Group; Research Area Biotechnology and Microbiology; Institute of Chemical Engineering; Vienna University of Technology; Vienna Austria
| |
Collapse
|