1
|
He XL, Liang ZH, Huang ZH, Qi LB, Wu Y, Liu J, Huang T, Liu JB, Pi JS, Zhang H. Impact of stocking densities on growth, organ index, serum biochemistry, gut morphology and microbiota of young ducks in a rice-duck-crayfish coculture system. Anim Biosci 2025; 38:1067-1080. [PMID: 39901714 PMCID: PMC12062810 DOI: 10.5713/ab.24.0488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/04/2024] [Accepted: 12/09/2024] [Indexed: 02/05/2025] Open
Abstract
OBJECTIVE The rice-duck-crayfish (RDC) coculture system, an ecologically efficient breeding strategy that accommodates natural behavior of ducks and improves their welfare. The optimal stocking density and its impact on duck health in this system remains undetermined. The study examined the impact of stocking densities on growth, organ index, serum biochemistry, gut morphology and microbiota of ducks in RDC system. METHODS A total of five hundred and forty 20-day-old Nonghu No. 2 ducks were randomly allocated based on density: low-density (LD; 8 birds/666.67 m2), mediumdensity (MD; 12 birds/666.67 m2) and high-density (HD; 16 birds/666.67 m2) groups, with three replicates in each group, and the symbiosis period was up to 40 days until rice tasselling. RESULTS There were no significant differences in final body weight, average daily gain, or feed:gain ratio between groups (p>0.05); however, the liver and spleen indices of ducks in HD group were significantly greater than those in LD group (p<0.05). The serum albumin concentration in HD group decreased, whereas creatine kinase activity increased (p<0.05). Additionally, the ileal crypt depth significantly increased and the ileal villus height and villus/crypt ratio significantly decreased in ducks in MD and HD groups compared to LD group (p<0.05). Moreover, the abundance of cecal Deferribacterota and Spirochaetota increased significantly (p<0.05), while the abundance of Firmicutes decreased significantly (p<0.05) with increasing stocking density. Moreover, the increase in stocking density significantly decreased the abundance of some beneficial bacteria (Faecalibacterium and Fournierella) and increased the abundance of some harmful bacteria (Mucispirillum and Brachyspira) (p<0.05). CONCLUSION These results suggest that moderately HD breeding doesn't significantly affect duck growth, but increased stocking density led to changes in cecal microbiota and dysbiosis. Reducing stocking density positively affects immune parameters and ileum morphology. However, due to the limited number of total replicates of the study, further research is needed to validate the reliability of the results.
Collapse
Affiliation(s)
- Xiao Long He
- Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan,
China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang,
China
| | - Zhen Hua Liang
- Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan,
China
| | - Ze Heng Huang
- College of Animal Science and Technology, Yangtze University, Jingzhou,
China
| | - Lian Bing Qi
- Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan,
China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang,
China
| | - Yan Wu
- Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan,
China
| | - Jia Liu
- Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan,
China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang,
China
| | - Tao Huang
- Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan,
China
| | - Jing Bo Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang,
China
| | - Jin Song Pi
- Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan,
China
| | - Hao Zhang
- Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan,
China
| |
Collapse
|
2
|
Vodovotz Y, Arciero J, Verschure PF, Katz DL. A multiscale inflammatory map: linking individual stress to societal dysfunction. FRONTIERS IN SCIENCE 2024; 1:1239462. [PMID: 39398282 PMCID: PMC11469639 DOI: 10.3389/fsci.2023.1239462] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
As populations worldwide show increasing levels of stress, understanding emerging links among stress, inflammation, cognition, and behavior is vital to human and planetary health. We hypothesize that inflammation is a multiscale driver connecting stressors that affect individuals to large-scale societal dysfunction and, ultimately, to planetary-scale environmental impacts. We propose a 'central inflammation map' hypothesis to explain how the brain regulates inflammation and how inflammation impairs cognition, emotion, and action. According to our hypothesis, these interdependent inflammatory and neural processes, and the inter-individual transmission of environmental, infectious, and behavioral stressors - amplified via high-throughput digital global communications - can culminate in a multiscale, runaway, feed-forward process that could detrimentally affect human decision-making and behavior at scale, ultimately impairing the ability to address these same stressors. This perspective could provide non-intuitive explanations for behaviors and relationships among cells, organisms, and communities of organisms, potentially including population-level responses to stressors as diverse as global climate change, conflicts, and the COVID-19 pandemic. To illustrate our hypothesis and elucidate its mechanistic underpinnings, we present a mathematical model applicable to the individual and societal levels to test the links among stress, inflammation, control, and healing, including the implications of transmission, intervention (e.g., via lifestyle modification or medication), and resilience. Future research is needed to validate the model's assumptions, expand the factors/variables employed, and validate it against empirical benchmarks. Our model illustrates the need for multilayered, multiscale stress mitigation interventions, including lifestyle measures, precision therapeutics, and human ecosystem design. Our analysis shows the need for a coordinated, interdisciplinary, international research effort to understand the multiscale nature of stress. Doing so would inform the creation of interventions that improve individuals' lives and communities' resilience to stress and mitigate its adverse effects on the world.
Collapse
Affiliation(s)
- Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Immunology, Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Julia Arciero
- Department of Mathematical Sciences, Indiana University - Purdue University Indianapolis, Indianapolis, IN, United States
| | - Paul Fmj Verschure
- Laboratory of Synthetic, Perceptive, Emotive and Cognitive Systems (SPECS), Donders Centre of Neuroscience, Donders Centre for Brain, Cognition and Behaviour, Faculty of Science and Engineering, Radboud University, Netherlands
| | - David L Katz
- Founder, True Health Initiative, The Health Sciences Academy, London, United Kingdom
- Tangelo Services, Auckland, United States
| |
Collapse
|
3
|
Cheng C, Li G, Yang X, Zhao J, Liu J, Zheng A, Zhang Z. High diversity, close genetic relatedness, and favorable living conditions benefit species co-occurrence of gut microbiota in Brandt's vole. Front Microbiol 2024; 15:1337402. [PMID: 38384265 PMCID: PMC10879610 DOI: 10.3389/fmicb.2024.1337402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
Introduction Revealing factors and mechanisms in determining species co-existence are crucial to community ecology, but studies using gut microbiota data are still lacking. Methods Using gut microbiota data of 556 Brandt's voles from 37 treatments in eight experiments, we examined the relationship of species co-occurrence of gut microbiota in Brandt's voles (Lasiopodomys brandtii) with genetic distance (or genetic relatedness), community diversity, and several environmental variables. Results We found that the species co-occurrence index (a larger index indicates a higher co-occurrence probability) of gut microbiota in Brandt's voles was negatively associated with the genetic distance between paired ASVs and the number of cohabitating voles in the experimental space (a larger number represents more crowding social stress), but positively with Shannon diversity index, grass diets (representing natural foods), and non-physical contact within an experimental space (representing less stress). Discussion Our study demonstrated that high diversity, close genetic relatedness, and favorable living conditions would benefit species co-occurrence of gut microbiota in hosts. Our results provide novel insights into factors and mechanisms that shape the community structure and function of gut microbiota and highlight the significance of preserving the biodiversity of gut microbiota.
Collapse
Affiliation(s)
- Chaoyuan Cheng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Guoliang Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xifu Yang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jidong Zhao
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi’an, China
| | - Jing Liu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, School of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Aihua Zheng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhibin Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Xu X, Li G, Zhang D, Zhu H, Liu G, Zhang Z. Gut Microbiota is Associated with Aging-Related Processes of a Small Mammal Species under High-Density Crowding Stress. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205346. [PMID: 36965140 PMCID: PMC10190659 DOI: 10.1002/advs.202205346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/15/2023] [Indexed: 05/18/2023]
Abstract
Humans and animals frequently encounter high-density crowding stress, which may accelerate their aging processes; however, the roles of gut microbiota in the regulation of aging-related processes under high-density crowding stress remain unclear. In the present study, it is found that high housing density remarkably increases the stress hormone (corticosterone), accelerates aging-related processes as indicated by telomere length (in brain and liver cells) and DNA damage or inflammation (as revealed by tumor necrosis factor-α and interleukin-10 levels), and reduces the lifespan of Brandt's vole (Lasiopodomys brandtii). Fecal microbiota transplantation from donor voles of habitats with different housing densities induces similar changes in aging-related processes in recipient voles. The elimination of high housing density or butyric acid administration delays the appearance of aging-related markers in the brain and liver cells of voles housed at high-density. This study suggests that gut microorganisms may play a significant role in regulating the density-dependent aging-related processes and subsequent population dynamics of animals, and can be used as potential targets for alleviating stress-related aging in humans exposed to high-density crowding stress.
Collapse
Affiliation(s)
- Xiaoming Xu
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Guoliang Li
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- CAS Center for Excellence in Biotic InteractionsUniversity of Chinese Academy of SciencesBeijing100049China
| | - Da Zhang
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Hanyi Zhu
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Guang‐hui Liu
- Institute for Stem cell and RegenerationCASBeijing100049China
- State Key Laboratory of Membrane BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Beijing Institute for Stem Cell and Regenerative MedicineBeijing100101China
| | - Zhibin Zhang
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- CAS Center for Excellence in Biotic InteractionsUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
5
|
Dai X, Chen L, Liu M, Liu Y, Jiang S, Xu T, Wang A, Yang S, Wei W. Effect of 6-Methoxybenzoxazolinone on the Cecal Microbiota of Adult Male Brandt's Vole. Front Microbiol 2022; 13:847073. [PMID: 35422782 PMCID: PMC9002351 DOI: 10.3389/fmicb.2022.847073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/28/2022] [Indexed: 11/28/2022] Open
Abstract
The anti-microbial effects of plant secondary metabolite (PSM) 6-methoxybenzoxazolinone (6-MBOA) have been overlooked. This study investigated the effect of 6-MBOA on the cecal microbiota of adult male Brandt’s voles (Lasiopodomys brandtii), to evaluate its effect on the physiology of mammalian herbivores. The growth of voles was inhibited by 6-MBOA. A low dose of 6-MBOA enhanced the observed species, as well as the Chao1 and abundance-based coverage estimator (ACE) indices and introduced changes in the structure of cecal microbiota. The abundance of the phylum Tenericutes, classes Mollicutes and Negativicutes, order Selenomonadales, families Ruminococcaceae and Veillonellaceae, genera Quinella, Caproiciproducens, Anaerofilum, Harryflintia, and unidentified Spirochaetaceae in the cecal microbiota was enhanced upon administration of a low dose of 6-MBOA, which also inhibited glucose metabolism and protein digestion and absorption in the cecal microbiota. 6-MBOA treatment also stimulated butyrate production and dose-dependently enhanced the metabolism of xenobiotics in the cecal microbiome. Our findings indicate that 6-MBOA can affect Brandt’s voles by inducing changes in the abundance of cecal bacteria, thereby, altering the contents of short-chain fatty acids (SCFAs) and pathway intermediates, ultimately inhibiting the growth of voles. Our research suggests that 6-MBOA could potentially act as a digestion-inhibiting PSM in the interaction between mammalian herbivores and plants.
Collapse
Affiliation(s)
- Xin Dai
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Lin Chen
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Mengyue Liu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Ying Liu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Siqi Jiang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Tingting Xu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Aiqin Wang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Shengmei Yang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Wanhong Wei
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|