1
|
Liu J, Pei R, Liu R, Jing C, Liu W. Arsenic methylation and microbial communities in paddy soils under alternating anoxic and oxic conditions. J Environ Sci (China) 2025; 148:468-475. [PMID: 39095181 DOI: 10.1016/j.jes.2023.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 08/04/2024]
Abstract
Arsenic (As) methylation in soils affects the environmental behavior of As, excessive accumulation of dimethylarsenate (DMA) in rice plants leads to straighthead disease and a serious drop in crop yield. Understanding the mobility and transformation of methylated arsenic in redox-changing paddy fields is crucial for food security. Here, soils including un-arsenic contaminated (N-As), low-arsenic (L-As), medium-arsenic (M-As), and high-arsenic (H-As) soils were incubated under continuous anoxic, continuous oxic, and consecutive anoxic/oxic treatments respectively, to profile arsenic methylating process and microbial species involved in the As cycle. Under anoxic-oxic (A-O) treatment, methylated arsenic was significantly increased once oxygen was introduced into the incubation system. The methylated arsenic concentrations were up to 2-24 times higher than those in anoxic (A), oxic (O), and oxic-anoxic (O-A) treatments, under which arsenic was methylated slightly and then decreased in all four As concentration soils. In fact, the most plentiful arsenite S-adenosylmethionine methyltransferase genes (arsM) contributed to the increase in As methylation. Proteobacteria (40.8%-62.4%), Firmicutes (3.5%-15.7%), and Desulfobacterota (5.3%-13.3%) were the major microorganisms related to this process. These microbial increased markedly and played more important roles after oxygen was introduced, indicating that they were potential keystone microbial groups for As methylation in the alternating anoxic (flooding) and oxic (drainage) environment. The novel findings provided new insights into the reoxidation-driven arsenic methylation processes and the model could be used for further risk estimation in periodically flooded paddy fields.
Collapse
Affiliation(s)
- Jing Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Rui Pei
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Runzeng Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Chuanyong Jing
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Wenjing Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
2
|
Miranda EM, McLaughlin CM, Reep JK, Edgar M, Landrum C, Severson C, Grubb DG, Hamdan N, Hansen S, Santisteban L, Delgado AG. High Efficacy Two-Stage Metal Treatment Incorporating Basic Oxygen Furnace Slag and Microbiological Sulfate Reduction. ACS ES&T ENGINEERING 2024; 4:433-444. [PMID: 38357246 PMCID: PMC10862489 DOI: 10.1021/acsestengg.3c00381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 02/16/2024]
Abstract
Lignocellulosic sulfate-reducing biochemical reactors (SRBRs) can be implemented as passive treatment for mining-influenced water (MIW) mitigating the potentially deleterious effects of MIW acidic pH, and high concentrations of metal(loid)s and SO42-. In this study, a novel two-stage treatment for MIW was designed, where basic oxygen furnace slag (slag stage) and microbial SO42- reduction (SRBR stage) were incorporated in series. The SRBRs contained spent brewing grains or sugarcane bagasse as sources of lignocellulose. The slag reactor removed >99% of the metal(loid) concentration present in the MIW (130 ± 40 mg L-1) and increased MIW pH from 2.6 ± 0.2 to 12 ± 0.3. The alkaline effluent pH of the slag reactor was mitigated by remixing slag effluent with acidic MIW before SRBR treatment. The SRBR stage removed the bulk of SO42- from MIW, additional metal(loid)s, and yielded a circumneutral effluent pH. Cadmium, copper, and zinc showed high removal rates in SRBRs (≥96%) and likely precipitated as sulfide minerals. The microbial communities developed in SRBRs were enriched in hydrolytic, fermentative, and sulfate-reducing taxa. However, the SRBRs developed distinct community compositions due to the different lignocellulose sources employed. Overall, this study underscores the potential of a two-stage treatment employing steel slag and SRBRs for full-scale implementation at mining sites.
Collapse
Affiliation(s)
- Evelyn M. Miranda
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, 1001 S. McAllister Avenue, Tempe, Arizona 85287, United States
- Engineering
Research Center for Bio-Mediated & Bio-Inspired Geotechnics (CBBG), Arizona State University, 425 E. University Dr., Tempe, Arizona 85281, United States
- School
for Engineering of Matter, Transport and Energy, Arizona State University, 501 E. Tyler Mall, Tempe, Arizona 85281, United States
| | - Caleb M. McLaughlin
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, 1001 S. McAllister Avenue, Tempe, Arizona 85287, United States
- Engineering
Research Center for Bio-Mediated & Bio-Inspired Geotechnics (CBBG), Arizona State University, 425 E. University Dr., Tempe, Arizona 85281, United States
- School
of Sustainable Engineering and the Built Environment, Arizona State University, 660 S. College Avenue, Tempe, Arizona 85281, United States
| | - Jeffrey K. Reep
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, 1001 S. McAllister Avenue, Tempe, Arizona 85287, United States
- Engineering
Research Center for Bio-Mediated & Bio-Inspired Geotechnics (CBBG), Arizona State University, 425 E. University Dr., Tempe, Arizona 85281, United States
- School
of Sustainable Engineering and the Built Environment, Arizona State University, 660 S. College Avenue, Tempe, Arizona 85281, United States
| | - Michael Edgar
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, 1001 S. McAllister Avenue, Tempe, Arizona 85287, United States
- Engineering
Research Center for Bio-Mediated & Bio-Inspired Geotechnics (CBBG), Arizona State University, 425 E. University Dr., Tempe, Arizona 85281, United States
- School
of Sustainable Engineering and the Built Environment, Arizona State University, 660 S. College Avenue, Tempe, Arizona 85281, United States
| | - Colton Landrum
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, 1001 S. McAllister Avenue, Tempe, Arizona 85287, United States
- Engineering
Research Center for Bio-Mediated & Bio-Inspired Geotechnics (CBBG), Arizona State University, 425 E. University Dr., Tempe, Arizona 85281, United States
| | - Carli Severson
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, 1001 S. McAllister Avenue, Tempe, Arizona 85287, United States
- Engineering
Research Center for Bio-Mediated & Bio-Inspired Geotechnics (CBBG), Arizona State University, 425 E. University Dr., Tempe, Arizona 85281, United States
| | - Dennis G. Grubb
- Jacobs
Engineering, 2001 Market
St., Suite 900, Philadelphia, Pennsylvania 19104, United States
| | - Nasser Hamdan
- Engineering
Research Center for Bio-Mediated & Bio-Inspired Geotechnics (CBBG), Arizona State University, 425 E. University Dr., Tempe, Arizona 85281, United States
- School
of Sustainable Engineering and the Built Environment, Arizona State University, 660 S. College Avenue, Tempe, Arizona 85281, United States
| | - Shane Hansen
- Freeport-McMoRan
Inc., 800 E. Pima Mine Road, Sahuarita, Arizona 85629, United States
| | - Leonard Santisteban
- Freeport-McMoRan
Inc., 800 E. Pima Mine Road, Sahuarita, Arizona 85629, United States
| | - Anca G. Delgado
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, 1001 S. McAllister Avenue, Tempe, Arizona 85287, United States
- Engineering
Research Center for Bio-Mediated & Bio-Inspired Geotechnics (CBBG), Arizona State University, 425 E. University Dr., Tempe, Arizona 85281, United States
- School
of Sustainable Engineering and the Built Environment, Arizona State University, 660 S. College Avenue, Tempe, Arizona 85281, United States
| |
Collapse
|