1
|
Liu W, Yang X, Zhou Y, Huang Z, Huang J. Gut microbiota in melanoma: Effects and pathogeneses. Microbiol Res 2025; 296:128144. [PMID: 40120565 DOI: 10.1016/j.micres.2025.128144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
The gut microbiota exhibits intricate connections with the body's immune system and holds significant implications for various diseases and cancers. Currently, accumulating evidence suggests a correlation between the composition of the gut microbiota and the development, treatment, and prognosis of melanoma. However, the underlying pathogenesis remains incompletely elucidated. In this comprehensive review, we present an in-depth review of the role played by gut microbiota in melanoma tumorigenesis, growth, metastasis, treatment response, and prognosis. Furthermore, we discuss the potential utility of gut microbiota as a promising prognostic marker. Lastly, we summarize three routes through which gut microbiota influences melanoma: immunity, aging, and the endocrine system. By modulating innate and adaptive immunity in patients with melanoma across different age groups and genders, the gut microbiota plays a crucial role in anti-tumor immune regulation from tumorigenesis to prognosis management, thereby impacting tumor growth and metastasis. This review also addresses current study limitations while highlighting future research prospects.
Collapse
Affiliation(s)
- Wenwen Liu
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xin Yang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yuwei Zhou
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ziru Huang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jian Huang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China; School of Healthcare Technology, Chengdu Neusoft University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Wang X, Zhao D, Bi D, Li L, Tian H, Yin F, Zuo T, Ianiro G, Li N, Chen Q, Qin H. Fecal microbiota transplantation: transitioning from chaos and controversial realm to scientific precision era. Sci Bull (Beijing) 2025; 70:970-985. [PMID: 39855927 DOI: 10.1016/j.scib.2025.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 01/27/2025]
Abstract
With the popularization of modern lifestyles, the spectrum of intestinal diseases has become increasingly diverse, presenting significant challenges in its management. Traditional pharmaceutical interventions have struggled to keep pace with these changes, leaving many patients refractory to conventional pharmaceutical treatments. Fecal microbiota transplantation (FMT) has emerged as a promising therapeutic approach for enterogenic diseases. Still, controversies persist regarding its active constituents, mechanism of action, scheme of treatment evaluation, indications, and contraindications. In this review, we investigated the efficacy of FMT in addressing gastrointestinal and extraintestinal conditions, drawing from follow-up data on over 8000 patients. We systematically addressed the controversies surrounding FMT's clinical application. We delved into key issues such as its technical nature, evaluation methods, microbial restoration mechanisms, and impact on the host-microbiota interactions. Additionally, we explored the potential colonization patterns of FMT-engrafted new microbiota throughout the entire intestine and elucidated the specific pathways through which the new microbiota modulates host immunity, metabolism, and genome.
Collapse
Affiliation(s)
- Xinjun Wang
- Tenth People's Hospital of Tongji University, Shanghai 200072, China; Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China; Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Shanghai Gastrointestinal Microecology Research Center, Shanghai 200072, China; Shanghai Institution of Gut Microbiota Research and Engineering Development, Shanghai 200072, China; Clinical Research Center for Digestive Diseases, Tongji University School of Medicine, Shanghai 200072, China.
| | - Di Zhao
- Tenth People's Hospital of Tongji University, Shanghai 200072, China; Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Shanghai Gastrointestinal Microecology Research Center, Shanghai 200072, China; Shanghai Institution of Gut Microbiota Research and Engineering Development, Shanghai 200072, China; Clinical Research Center for Digestive Diseases, Tongji University School of Medicine, Shanghai 200072, China
| | - Dexi Bi
- Department of Pathology, Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Long Li
- Tenth People's Hospital of Tongji University, Shanghai 200072, China; Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Shanghai Gastrointestinal Microecology Research Center, Shanghai 200072, China; Shanghai Institution of Gut Microbiota Research and Engineering Development, Shanghai 200072, China; Clinical Research Center for Digestive Diseases, Tongji University School of Medicine, Shanghai 200072, China
| | - Hongliang Tian
- Tenth People's Hospital of Tongji University, Shanghai 200072, China; Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Shanghai Gastrointestinal Microecology Research Center, Shanghai 200072, China; Shanghai Institution of Gut Microbiota Research and Engineering Development, Shanghai 200072, China; Clinical Research Center for Digestive Diseases, Tongji University School of Medicine, Shanghai 200072, China
| | - Fang Yin
- Tenth People's Hospital of Tongji University, Shanghai 200072, China; Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Shanghai Gastrointestinal Microecology Research Center, Shanghai 200072, China; Shanghai Institution of Gut Microbiota Research and Engineering Development, Shanghai 200072, China; Clinical Research Center for Digestive Diseases, Tongji University School of Medicine, Shanghai 200072, China
| | - Tao Zuo
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510655, China
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, 00168, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato, Rome, 00168, Italy
| | - Ning Li
- Tenth People's Hospital of Tongji University, Shanghai 200072, China; Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Shanghai Gastrointestinal Microecology Research Center, Shanghai 200072, China; Shanghai Institution of Gut Microbiota Research and Engineering Development, Shanghai 200072, China; Clinical Research Center for Digestive Diseases, Tongji University School of Medicine, Shanghai 200072, China
| | - Qiyi Chen
- Tenth People's Hospital of Tongji University, Shanghai 200072, China; Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Shanghai Gastrointestinal Microecology Research Center, Shanghai 200072, China; Shanghai Institution of Gut Microbiota Research and Engineering Development, Shanghai 200072, China; Clinical Research Center for Digestive Diseases, Tongji University School of Medicine, Shanghai 200072, China.
| | - Huanlong Qin
- Tenth People's Hospital of Tongji University, Shanghai 200072, China; Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China.
| |
Collapse
|
3
|
Xu Q, Xiang Q, Tan Z, Yang Q. Global research trends in the intestinal microflora and depression: bibliometrics and visual analysis. Front Cell Infect Microbiol 2025; 15:1507667. [PMID: 40070374 PMCID: PMC11893873 DOI: 10.3389/fcimb.2025.1507667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/07/2025] [Indexed: 03/14/2025] Open
Abstract
Background In recent years, the relationship between gut microbiota and human health has garnered significant attention. Notably, the potential connection between gut microbiota and mental health issues, such as depression and anxiety, has emerged as a new focal point for research. While some studies suggest a possible link between these factors, the field remains in its early stages of development, and there are notable methodological and sample size limitations. Purpose This study aims to systematically summarize the knowledge systems, research hotspots, and development trends related to intestinal microflora within the context of depression research. Methods This study conducted a search for publications related to intestinal microflora and depression in the Web of Science Core Collection (WOSCC) prior to August 6, 2024. The selected literature was subsequently analyzed using VOSviewer (v.1.6.20), SCImago Graphica (v.1.0.39), and CiteSpace (v.6.3.1). Results The study encompassed a total of 1,046 publications, demonstrating a consistent increase in annual publication volume. The primary research countries identified are China and the United States, with notable contributions from institutions such as the University of California and University College Cork, among others. Keywords analysis highlighted high-frequency terms including "gut microbiota," "depression," and "anxiety," and revealed 10 keyword clusters along with 20 strongest citation bursts keywords. The focus of research has shifted from compositional analysis of gut microbiota to its role in the pathogenesis of depression. Conclusions Research on gut microbiota and depression is growing, but there is still a need for greater collaboration between authors and institutions across regions, more ongoing interaction and communication to further explore the mechanisms of action of gut microbiota, to develop microbiota-based interventions, and to facilitate translation of research findings into clinical practice.
Collapse
Affiliation(s)
- Qian Xu
- School of Clinical Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Qingwei Xiang
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Zihu Tan
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Qiong Yang
- School of Clinical Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
4
|
Fu Y, Cheng HW. The Influence of Cecal Microbiota Transplantation on Chicken Injurious Behavior: Perspective in Human Neuropsychiatric Research. Biomolecules 2024; 14:1017. [PMID: 39199404 PMCID: PMC11352350 DOI: 10.3390/biom14081017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/26/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Numerous studies have evidenced that neuropsychiatric disorders (mental illness and emotional disturbances) with aggression (or violence) pose a significant challenge to public health and contribute to a substantial economic burden worldwide. Especially, social disorganization (or social inequality) associated with childhood adversity has long-lasting effects on mental health, increasing the risk of developing neuropsychiatric disorders. Intestinal bacteria, functionally as an endocrine organ and a second brain, release various immunomodulators and bioactive compounds directly or indirectly regulating a host's physiological and behavioral homeostasis. Under various social challenges, stress-induced dysbiosis increases gut permeability causes serial reactions: releasing neurotoxic compounds, leading to neuroinflammation and neuronal injury, and eventually neuropsychiatric disorders associated with aggressive, violent, or impulsive behavior in humans and various animals via a complex bidirectional communication of the microbiota-gut-brain (MGB) axis. The dysregulation of the MGB axis has also been recognized as one of the reasons for the prevalence of social stress-induced injurious behaviors (feather pecking, aggression, and cannibalistic pecking) in chickens. However, existing knowledge of preventing and treating these disorders in both humans and chickens is not well understood. In previous studies, we developed a non-mammal model in an abnormal behavioral investigation by rationalizing the effects of gut microbiota on injurious behaviors in chickens. Based on our earlier success, the perspective article outlines the possibility of reducing stress-induced injurious behaviors in chickens through modifying gut microbiota via cecal microbiota transplantation, with the potential for providing a biotherapeutic rationale for preventing injurious behaviors among individuals with mental disorders via restoring gut microbiota diversity and function.
Collapse
Affiliation(s)
- Yuechi Fu
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA;
| | - Heng-Wei Cheng
- Livestock Behavior Research Unit, USDA-ARS, West Lafayette, IN 47907, USA
| |
Collapse
|
5
|
Wang Z, Wu Y, Li X, Ji X, Liu W. The gut microbiota facilitate their host tolerance to extreme temperatures. BMC Microbiol 2024; 24:131. [PMID: 38643098 PMCID: PMC11031955 DOI: 10.1186/s12866-024-03277-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/25/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Exposure to extreme cold or heat temperature is one leading cause of weather-associated mortality and morbidity in animals. Emerging studies demonstrate that the microbiota residing in guts act as an integral factor required to modulate host tolerance to cold or heat exposure, but common and unique patterns of animal-temperature associations between cold and heat have not been simultaneously examined. Therefore, we attempted to investigate the roles of gut microbiota in modulating tolerance to cold or heat exposure in mice. RESULTS The results showed that both cold and heat acutely change the body temperature of mice, but mice efficiently maintain their body temperature at conditions of chronic extreme temperatures. Mice adapt to extreme temperatures by adjusting body weight gain, food intake and energy harvest. Fascinatingly, 16 S rRNA sequencing shows that extreme temperatures result in a differential shift in the gut microbiota. Moreover, transplantation of the extreme-temperature microbiota is sufficient to enhance host tolerance to cold and heat, respectively. Metagenomic sequencing shows that the microbiota assists their hosts in resisting extreme temperatures through regulating the host insulin pathway. CONCLUSIONS Our findings highlight that the microbiota is a key factor orchestrating the overall energy homeostasis under extreme temperatures, providing an insight into the interaction and coevolution of hosts and gut microbiota.
Collapse
Affiliation(s)
- Ziguang Wang
- School of Plant Protection, Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei, China
- First Clinical Medical College, Mudanjiang Medical College, Mudanjiang, China
| | - Yujie Wu
- School of Plant Protection, Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei, China
| | - Xinxin Li
- China-Japan Union Hospital, Jilin University, Changchun, China
| | - Xiaowen Ji
- School of Plant Protection, Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei, China.
| | - Wei Liu
- School of Plant Protection, Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei, China.
| |
Collapse
|