1
|
Binde DR, de Moraes MF, Haefele SM, Pierangeli MAP. Impact of agricultural activities on trace element levels in soils of Mato Grosso, Brazil. CHEMOSPHERE 2025; 384:144497. [PMID: 40449154 DOI: 10.1016/j.chemosphere.2025.144497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/01/2025] [Accepted: 05/21/2025] [Indexed: 06/03/2025]
Abstract
The expansion of intensive agriculture must be linked to soil quality, especially in strategic regions for global food production, such as the state of Mato Grosso. This study evaluated the distribution and total levels of trace elements (TEs) in the soils of this region, identifying possible influences of agricultural activity and providing support for sustainable management practices. A total of 186 soil samples representing the nine ecoregions of the state, at a depth of 0-20 cm, were analyzed. The levels of TEs were extracted using the aqua regia digestion method and quantified using Inductively Coupled Plasma Mass Spectrometry and Inductively Coupled Plasma Optical Emission Spectrometry. Descriptive, inferential, and multivariate statistical analysis were performed. The results indicated that most of the TEs were below reference values, suggesting that the areas are safe for agricultural production. The state has naturally elevated levels of As, Cr, and Fe, along with low levels of Se. These data contribute to national discussions and prevent misinterpretations about environmental contamination. An increase in Zn and Cd was observed in agricultural areas, within safe levels and related to fertilization. Specific regions, due to high levels TEs, require more monitoring. Spearman correlation and cluster analysis, combined with the study of different soil types, geological provinces, and lithologies, as well as knowledge of natural areas, were essential for understanding the origins of the TEs. This study provides important information for sustainable soil management and food security.
Collapse
Affiliation(s)
- Daisy Rickli Binde
- Department of Education, Federal Institute of Mato Grosso, Barra do Garças, MT, 78605-099, Brazil.
| | - Milton Ferreira de Moraes
- Department of Agronomy, Graduate Program in Tropical Agriculture, Faculty of Agronomy and Animal Science, Federal University of Mato Grosso, Cuiabá, MT, 78060-900, Brazil.
| | - Stephan M Haefele
- Department of Sustainable Soils and Crops, Rothamsted Research, West Common, Hertfordshire, Harpenden, AL5 2JQ, UK.
| | - Maria Aparecida Pereira Pierangeli
- Department of Animal Science, Graduate Program of Environmental Science, University of Mato Grosso State, Pontes e Lacerda, MT, 78250-000, Brazil.
| |
Collapse
|
2
|
Bharadwaj P, Devi CJ, Thakur D. Unlocking Rhizosphere Dynamics: Exploring Mechanisms of Plant-Microbe Interactions for Enhanced Tea (Camellia sinensis (L.) O. Kuntze) Productivity. Curr Microbiol 2025; 82:257. [PMID: 40261358 DOI: 10.1007/s00284-025-04235-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 04/09/2025] [Indexed: 04/24/2025]
Abstract
The rhizosphere, the interface between plant roots and soil, refers to the contact zone where plants and soil microbes engage in beneficial and parasitic interactions. The significant interactions and their importance form a dynamic interface between the roots of plants and the soil. Beneficial ones, especially plant growth-promoting bacteria (PGPB) and arbuscular mycorrhizal fungi (AMF), improve plant development and enhance stress resistance due to microbial secretions, exudates from roots, and edaphic factors. All these are very important in cultivating tea (Camellia sinensis (L.) O Kuntze) plants, boosting growth, yield, and leaf content of amino acids, proteins, caffeine, and polyphenols. Yet, the molecular mechanisms of such interactions necessitate high-end technologies like genome editing and proteomics to fine-tune rhizosphere dynamics for greater plant health and productivity. The root exudates, rich in nutrients, serve as a source of food for the soil microbes while facilitating communication and colonisation by beneficial organisms, such as AMF and bacteria, thus significantly impacting the performance of a tea plant. High nitrogen fertilisers are readily applied in tea farming, although environmental risks include soil acidification and increased emissions of nitrous oxide (N2O), a potent greenhouse gas. Understanding and manipulating plant root-soil microbe interactions are critical for developing sustainable farming systems that enhance productivity without causing environmental damage. This review describes the mechanisms by which beneficial microbes function in the rhizosphere, strategies for modifying root exudates to improve tea production, and the tea microbiome's underexplored potential in contributing towards sustainability. This review thus emerges as one that presents knowledge gaps and possible future directions in tea microbiome science predicated on the amelioration of tea farming by enhancing productivity and ensuring environmental sustainability.
Collapse
Affiliation(s)
- Pranami Bharadwaj
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Chingakham Juliya Devi
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India
- Department of Biotechnology, Gauhati University, Guwahati, Assam, 781014, India
| | - Debajit Thakur
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
- Department of Biotechnology, Gauhati University, Guwahati, Assam, 781014, India.
| |
Collapse
|
3
|
Schalk IJ. Bacterial siderophores: diversity, uptake pathways and applications. Nat Rev Microbiol 2025; 23:24-40. [PMID: 39251840 DOI: 10.1038/s41579-024-01090-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 09/11/2024]
Abstract
Iron is an essential nutrient for the growth, survival and virulence of almost all bacteria. To access iron, many bacteria produce siderophores, molecules with a high affinity for iron. Research has highlighted substantial diversity in the chemical structure of siderophores produced by bacteria, as well as remarkable variety in the molecular mechanisms involved in strategies for acquiring iron through these molecules. The metal-chelating properties of siderophores, characterized by their high affinity for iron and ability to chelate numerous other metals (albeit with lower affinity compared with iron), have also generated interest in diverse fields. Siderophores find applications in the environment, such as in bioremediation and agriculture, in which emerging and innovative strategies are being developed to address pollution and enhance nutrient availability for plants. Moreover, in medicine, siderophores could be used as a tool for novel antimicrobial therapies and medical imaging, as well as in haemochromatosis, thalassemia or cancer treatments. This Review offers insights into the diversity of siderophores, highlighting their potential applications in environmental and medical contexts.
Collapse
|
4
|
Hernandez LE, Ruiz JM, Espinosa F, Alvarez-Fernandez A, Carvajal M. Plant nutrition challenges for a sustainable agriculture of the future. PHYSIOLOGIA PLANTARUM 2024; 176:e70018. [PMID: 39691080 DOI: 10.1111/ppl.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/19/2024]
Abstract
This article offers a comprehensive review of sustainable plant nutrition concepts, examining a multitude of cutting-edge techniques that are revolutionizing the modern area. The review copes with the crucial role of biostimulants as products that stimulate plant nutrition processes, including their potential for biofertilization, followed by an exploration of the significance of micronutrients in plant health and growth. We then delve into strategies for enhancing plants' tolerance to mineral nutrient contaminants and the promising realm of biofortification to increase the essential nutrients necessary for human health. Furthermore, this work also provides a concise overview of the burgeoning field of nanotechnologies in fertilization, while the integration of circular economy principles underscores the importance of sustainable resource management. Then, with examined the interrelation between micronutrients. We conclude with the future challenges and opportunities that lie ahead in the pursuit of more sustainable and resilient plant systems.
Collapse
Affiliation(s)
- Luis E Hernandez
- Laboratory of Plant Physiology-Department of Biology, Universidad Autónoma Madrid, Madrid, Spain
| | - Juan M Ruiz
- Department of Plant Physiology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Francisco Espinosa
- Plant Biology, Ecology and Earth Sciences Department, Extremadura University, Badajoz, Spain
| | | | - Micaela Carvajal
- Aquaporins Group. Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS, CSIC), Campus Universitario de Espinardo, Murcia, Spain
| |
Collapse
|
5
|
Vafa ZN, Sohrabi Y, Mirzaghaderi G, Heidari G, Rizwan M, Sayyed RZ. Effect of bio-fertilizers and seaweed extract on growth and yield of wheat (Triticum aestivum L.) under different irrigation regimes: Two-year field study. CHEMOSPHERE 2024; 364:143068. [PMID: 39151584 DOI: 10.1016/j.chemosphere.2024.143068] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
Wheat productivity is constrained by genetic, agronomic, and climate factors, though it is an important crop for food production worldwide. The present study evaluated the effect of bio-fertilizer consortia and seaweed extracts on the growth and yield of two wheat varieties under different irrigation regimes in a field study. This experiment was conducted in a split-split plot based on a randomized complete block design with four replications in 2018 and 2019. Irrigation treatments were the main factor, wheat variety (Sardari and Sirvan) the sub-factor, and bio-fertilizers the sub-sub-factors. The results showed that irrigation regimes significantly improved leaf width, number of leaves, fresh weight of roots and shoots, osmotic potential, leaf water content, and number of stomata respectively by 57.53, 38.59, 106.65, 135.29, 87.92, 14.22 and 13.77, 88.02 and 96.11 percent compared to dry-land conditions. Applying one- and two-times irrigation increased grain yield by 51% and 79%, respectively, and the response varied in wheat varieties. Sardari variety due to having smaller leaf dimensions (Leaf length and width) and lower fresh and dry weight of roots and shoots, as well as lower leaf and tissue water content, had lower grain yield than the Sirvan variety. All the bio-fertilizers positively impacted the growth and yield of both varieties. However, the highest average grain yield in the first and second years of the experiment (with an average of 5226.25 and 4923.33 kg/ha, respectively) were found under the combined application of Mycorrhiza + Nitrozist and Phosphozist + Seaweed extract. The results of the present study underscore the importance of irrigation regimes and consortia of bio-fertilizers for improving grain yield. This study also highlighted the resilience of the studied wheat varieties and bio-fertilizers to projected climate changes. These findings could provide insights into adaptive strategies for mitigating the impact of climate change on wheat production.
Collapse
Affiliation(s)
- Zahra Najafi Vafa
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Yousef Sohrabi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran.
| | - Ghader Mirzaghaderi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Gholamreza Heidari
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - R Z Sayyed
- Department of Microbiology, PSGVP Mandal's Arts, Science and Commerce College, Shahada, Maharashtra, 4245409, India
| |
Collapse
|
6
|
Acharya BR, Gill SP, Kaundal A, Sandhu D. Strategies for combating plant salinity stress: the potential of plant growth-promoting microorganisms. FRONTIERS IN PLANT SCIENCE 2024; 15:1406913. [PMID: 39077513 PMCID: PMC11284086 DOI: 10.3389/fpls.2024.1406913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/24/2024] [Indexed: 07/31/2024]
Abstract
Global climate change and the decreasing availability of high-quality water lead to an increase in the salinization of agricultural lands. This rising salinity represents a significant abiotic stressor that detrimentally influences plant physiology and gene expression. Consequently, critical processes such as seed germination, growth, development, and yield are adversely affected. Salinity severely impacts crop yields, given that many crop plants are sensitive to salt stress. Plant growth-promoting microorganisms (PGPMs) in the rhizosphere or the rhizoplane of plants are considered the "second genome" of plants as they contribute significantly to improving the plant growth and fitness of plants under normal conditions and when plants are under stress such as salinity. PGPMs are crucial in assisting plants to navigate the harsh conditions imposed by salt stress. By enhancing water and nutrient absorption, which is often hampered by high salinity, these microorganisms significantly improve plant resilience. They bolster the plant's defenses by increasing the production of osmoprotectants and antioxidants, mitigating salt-induced damage. Furthermore, PGPMs supply growth-promoting hormones like auxins and gibberellins and reduce levels of the stress hormone ethylene, fostering healthier plant growth. Importantly, they activate genes responsible for maintaining ion balance, a vital aspect of plant survival in saline environments. This review underscores the multifaceted roles of PGPMs in supporting plant life under salt stress, highlighting their value for agriculture in salt-affected areas and their potential impact on global food security.
Collapse
Affiliation(s)
- Biswa R. Acharya
- US Salinity Laboratory, USDA-ARS, Riverside, CA, United States
- College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA, United States
| | - Satwinder Pal Gill
- Plants, Soils, and Climate, College of Agricultural and Applied Sciences, Utah State University, Logan, UT, United States
| | - Amita Kaundal
- Plants, Soils, and Climate, College of Agricultural and Applied Sciences, Utah State University, Logan, UT, United States
| | - Devinder Sandhu
- US Salinity Laboratory, USDA-ARS, Riverside, CA, United States
| |
Collapse
|
7
|
Zhang R, Bu Y, Zhang Y, Choi SH, Wang Q, Ma Y, Shao S. Fur-mediated regulation of hydrogen sulfide synthesis, stress response, and virulence in Edwardsiella piscicida. Microbiol Res 2024; 284:127735. [PMID: 38678681 DOI: 10.1016/j.micres.2024.127735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
The production of endogenous hydrogen sulfide (H2S) is an important phenotype of bacteria. H2S plays an important role in bacterial resistance to ROS and antibiotics, which significantly contributes to bacterial pathogenicity. Edwardsiella piscicida, the Gram-negative pathogen causing fish edwardsiellosis, has been documented to produce hydrogen sulfide. In the study, we revealed that Ferric uptake regulator (Fur) controlled H2S synthesis by activating the expression of phsABC operon. Besides, Fur participated in the bacterial defense against ROS and cationic antimicrobial peptides and modulated T3SS expression. Furthermore, the disruption of fur exhibited a significant in vivo colonization defect. Collectively, our study demonstrated the regulation of Fur in H2S synthesis, stress response, and virulence, providing a new perspective for better understanding the pathogenesis of Edwardsiella.
Collapse
Affiliation(s)
- Riyu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yifan Bu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuanxing Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Laboratory of Aquatic Animal Diseases of MOA, Shanghai 200237, China; Shanghai Haosi Marine Biotechnology Co., Ltd, China
| | - Yue Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China; Laboratory of Aquatic Animal Diseases of MOA, Shanghai 200237, China.
| | - Shuai Shao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China; Laboratory of Aquatic Animal Diseases of MOA, Shanghai 200237, China.
| |
Collapse
|
8
|
Mishra P, Mishra J, Arora NK. Salt tolerant Pseudomonas taiwanensis PWR-1 in combination with a reduced dose of mineral fertilizers improves the nutritional and antioxidant properties of wheatgrass grown in saline soil. World J Microbiol Biotechnol 2023; 40:11. [PMID: 37953356 DOI: 10.1007/s11274-023-03806-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023]
Abstract
Salt-tolerant plant growth promoting rhizobacteria (ST-PGPR) are known to ameliorate salt stress in plants by various mechanisms. The current study aims to investigate the role of an ST-PGPR strain Pseudomonas taiwanensis PWR-1 applied along with a reduced dose of mineral fertilizers (N, P, and K) in the improvement of the antioxidant and nutritional properties of wheatgrass (Triticum aestivum L.) grown in saline soil. Application of P. taiwanensis PWR-1 along with 50% of the recommended dose of mineral fertilizers resulted in a significant improvement of growth parameters including shoot length (22.79%), root length (20.38%), fresh weight (13.15%), dry weight (92.34%), vigor index (13.36%), and relative water content (48.24%). The combined application of PWR-1 and mineral fertilizers increased the production of osmoprotectants (proline, total soluble sugars, glycine betaine), antioxidants (SOD, POD, APX, CAT, PPO, and reduced glutathione), and free radical scavengers (DPPH and H2O2) in wheatgrass. Furthermore, the concentration of micronutrients (Zn and Fe), macronutrients (N, and P), and vitamins (B1 and E) also increased in the above treatment. Oxidative stress markers (malondialdehyde and electrolyte leakage) and Na+ accumulation were significantly reduced whilst K+ content increased in the shoot, which helped in maintaining the K+/Na+ ratio in wheatgrass under saline conditions. The results indicated that the application of ST-PGPR could not only reduce the dosage of mineral fertilizers but might be useful for improving the nutritional and antioxidant properties of medicinal crops such as wheatgrass under salt-stress conditions. Implementing this approach could result in the reduction of chemical usage, while also facilitating enhanced uptake of micronutrients in crops, particularly in regions affected by salinity.
Collapse
Affiliation(s)
- Priya Mishra
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Jitendra Mishra
- Department of Microbiology, Amity University, Mohali, Punjab, 140306, India
| | - Naveen Kumar Arora
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India.
| |
Collapse
|