1
|
Bao C, Zhang Y, Feng J, Hong X, Gao N, Feng G. Deciphering tuberculosis: lysosome-centric insights into pathogenesis and therapies. Front Cell Infect Microbiol 2025; 15:1582037. [PMID: 40438237 PMCID: PMC12116394 DOI: 10.3389/fcimb.2025.1582037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Accepted: 04/17/2025] [Indexed: 06/01/2025] Open
Abstract
Tuberculosis is a widely spread disease caused by Mycobacterium tuberculosis (Mtb). The pathogenicity of the pathogen is closely associated with the immune defense mechanisms of the host cells. As key cellular degradation and metabolic centers, lysosomes critically regulate tuberculosis infection. When Mtb invades the host, it is taken up by macrophages and enters phagosomes. Subsequently, the phagosomes fuse with lysosomes and form phagolysosomes, which eliminate the pathogenic bacteria through the acidic environment and hydrolytic enzymes within lysosomes. However, Mtb can interfere with the normal functions of lysosomes through various strategies. It can secrete specific factors (such as ESAT-6, ppk-1, and AcpM) to inhibit the acidification of lysosomes, enzyme activity, and the fusion of phagosomes and lysosomes, thereby enabling Mtb proliferation within host cells. An in-depth exploration of the mechanism of the interaction between Mtb and lysosomes will both uncover bacterial immune evasion strategies and identify novel anti-tuberculosis therapeutic targets.
Collapse
Affiliation(s)
- Cui Bao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, The Second Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuanyuan Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, The Second Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiao Feng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, The Second Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiuwen Hong
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, The Second Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Nan Gao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, The Second Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ganzhu Feng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Patel S, Naik L, Das M, Nayak DK, Dandsena PK, Mishra A, Kumar A, Dirisala VR, Mishra A, Das S, Singh R, Behura A, Dhiman R. Furamidine-induced autophagy exerts an anti-mycobacterial effect in a SIRT1-pAMPK-FOXO3a-dependent manner by elevation of intracellular Ca 2+ level expression. Microbiol Res 2025; 290:127976. [PMID: 39591744 DOI: 10.1016/j.micres.2024.127976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/02/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024]
Abstract
Mycobacterium tuberculosis (M. tb), the etiological agent of tuberculosis (TB), continues to be a major contributor to global mortality rates. To effectively combat this pandemic, TB control has to be enhanced in several areas, including point-of-care diagnostics, shorter and safer drug regimens, and preventative vaccination. The latest findings have highlighted autophagy as a host-defense mechanism that eradicates many invading bacteria, including M. tb. Thus, novel approaches like the stimulation of autophagy using various pharmaceutical drugs can be undertaken to deal with this noxious pathogen. The present study has been formulated to evaluate the anti-mycobacterial potential of Furamidine, a DNA minor groove binder (MGB). Initially, a non-cytotoxic concentration of Furamidine (10 µM) was used to assess its impact on the intracellular persistence of mycobacteria in differentiated THP-1 (dTHP-1) cells. Furamidine treatment compromised intracellular mycobacterial growth compared to control cells. Autophagy, a well-known host-defensive strategy, was investigated as a possible contributor to revealing the mechanism of action. Multiparametric approaches such as LC3-I to II conversion, protein level expression of different autophagic markers, and MDC staining were employed to study autophagic response that conclusively suggested the autophagy induction potential of Furamidine in dTHP-1 cells. Further, elevated LC3-II expression and increased autophagic vacuole accumulation under Baf-A1 treatment demonstrated the positive regulation of autophagic flux upon Furamidine treatment. Mechanistic investigations showed increased intracellular calcium (Ca2+) level expression, SIRT1, pAMPK, and FOXO3a activation upon its treatment. Inhibition of Ca2+ level expression suppressed Ca2+-mediated-FOXO3a level in Furamidine-treated cells. Furthermore, administering various inhibitors hampered the Furamidine-induced autophagy that impacted intracellular mycobacteria clearance. These results conclude that Furamidine triggered the Ca2+/pAMPK/SIRT1/FOXO3a pathway, causing less mycobacterial load in dTHP-1 cells.
Collapse
Affiliation(s)
- Salina Patel
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Lincoln Naik
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Mousumi Das
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Dev Kiran Nayak
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Pramathesh Kumar Dandsena
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Abtar Mishra
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Ashish Kumar
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Vijaya R Dirisala
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research, Vadlamudi, Guntur District, AP-522213, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan 342011, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, PO Box # 4, Faridabad, Haryana 121001, India
| | - Assirbad Behura
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India.
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India.
| |
Collapse
|