1
|
Rodríguez-de-la-Peña S, Gómez-Salazar S, Gutiérrez-Ortega JA, Badillo-Camacho J, Peregrina-Lucano AA, Shenderovich IG, Manríquez-González R. Novel Silica Hybrid Adsorbent Functionalized with l-Glutathione Used for the Uptake of As(V) from Aqueous Media. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Santiago Rodríguez-de-la-Peña
- Departamento de Química, Universidad de Guadalajara, Blvd. Marcelino García Barragán #1421, esq. Olímpica, Guadalajara, Jalisco 44430, Mexico
| | - Sergio Gómez-Salazar
- Departamento de Ingeniería Química, Universidad de Guadalajara, Blvd. Marcelino García Barragán #1421, esq. Olímpica, Guadalajara, Jalisco 44430, Mexico
| | - José Antonio Gutiérrez-Ortega
- Departamento de Química, Universidad de Guadalajara, Blvd. Marcelino García Barragán #1421, esq. Olímpica, Guadalajara, Jalisco 44430, Mexico
| | - Jessica Badillo-Camacho
- Departamento de Química, Universidad de Guadalajara, Blvd. Marcelino García Barragán #1421, esq. Olímpica, Guadalajara, Jalisco 44430, Mexico
| | - Alejandro Aarón Peregrina-Lucano
- Departamento de Farmacobiología, Universidad de Guadalajara, Blvd. Marcelino García Barragán #1421, esq. Olímpica, Guadalajara, Jalisco 44430, Mexico
| | - Ilya G. Shenderovich
- Faculty of Chemistry and Pharmacy, University of Regensburg, Universitaetstrasse 31, Regensburg 93053, Germany
| | - Ricardo Manríquez-González
- Departamento de Química, Universidad de Guadalajara, Blvd. Marcelino García Barragán #1421, esq. Olímpica, Guadalajara, Jalisco 44430, Mexico
- Departamento de Madera, Celulosa y Papel, CUCEI, Universidad de Guadalajara, Km 15.5, Carretera Guadalajara-Nogales, Guadalajara, Jalisco 45020, Mexico
| |
Collapse
|
2
|
Wang X, Liu L, Wang X, Ren J, Jia P, Fan W. Influence of humic acid on arsenic bioaccumulation and biotransformation to zebrafish: A comparative study between As(III) and As(V) exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113459. [PMID: 31708282 DOI: 10.1016/j.envpol.2019.113459] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/27/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
Previous studies have indicated that natural organic matter in the aquatic environment could affect arsenic bioaccumulation and biotransformation to aquatic organisms. However, the differences between the effects of arsenite and arsenate exposure have not been studied and compared in fish exposure models. In this study, adult zebrafish (Danio rerio) were exposed to 5 mg/L inorganic As solutions, in the presence of a range of humic acid (HA) concentrations (1, 2.5, 5, 10, 20 mg/L) in 96 h waterborne exposure. Results showed that in the presence of HA, total As bioaccumulation was significantly reduced in zebrafish following arsenite exposure, while this reduction was not observed during arsenate exposure. The reduction in total arsenic bioaccumulation for arsenite exposure can be explained by the fact that HA forming a surface coating on the cell surface, hindering transport and internalization. However, this reduction in total As was not observed due to differences in uptake pathways for arsenate exposure. Results also showed that Arsenobetaine (AsB) was the main biotransformation product in zebrafish following inorganic As exposure, accounting for 44.8%-64.7% of extracted arsenic species in all exposure groups. The addition of HA caused levels of MMA and As(III) to decrease, while the distribution of AsB significantly increased in arsenite exposure groups. The increase in AsB could be because the As(III)-HA complex was formed, affecting the methylation of As(III). In contrast, the addition of HA to arsenate exposure groups, did not affect the reduction of As(V) to As(III) and therefore, an increase in the distribution of AsB was not observed in arsenate exposure groups. This study provides useful information on the mechanisms of toxicity, for improved risk assessment of As in natural aquatic environments.
Collapse
Affiliation(s)
- Xiaoyan Wang
- School of Space and Environment, Beihang University, Beijing 100191, PR China
| | - Liping Liu
- Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Xiangrui Wang
- School of Space and Environment, Beihang University, Beijing 100191, PR China
| | - Jinqian Ren
- School of Space and Environment, Beihang University, Beijing 100191, PR China
| | - Pei Jia
- School of Space and Environment, Beihang University, Beijing 100191, PR China
| | - Wenhong Fan
- School of Space and Environment, Beihang University, Beijing 100191, PR China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, PR China.
| |
Collapse
|
3
|
Afroz H, Su S, Carey M, Meharg AA, Meharg C. Inhibition of Microbial Methylation via arsM in the Rhizosphere: Arsenic Speciation in the Soil to Plant Continuum. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3451-3463. [PMID: 30875469 DOI: 10.1021/acs.est.8b07008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The interplay between rice roots and manuring with respect to arsenic speciation, subsequent assimilation into roots, and translocation to shoots in paddy soil was investigated, alongside bacterial diversity characterization. Planting increased soil Eh and decreased soil solution arsenic species: inorganic arsenic, monomethylarsonic acid, trimethylarsenic oxide, and dimethylarsinic acid. Presence of plant roots increased the copy number of Clostridium and Tumebacillus 16S rRNA as well as Streptomyces arsenic methylating gene ( arsM), but decreased Acidobacteria_GP1 16S rRNA and Rhodopseudomonas. palustris BisB5 arsM. Sum of arsenic species decreased under root influence due to the interplay of inorganic arsenic mobilization in bulk soil under anaerobic and immobilization under oxygenated rhizospheric conditions. Manuring increased all soil solution arsenic species (>90%), shoot total arsenic (60%), copy number of Geobacter 16S rRNA, and R. palustris TIE-1 arsM, indicative of a shift towards microbes with iron reduction and oxidation as well as arsenic methylation capabilities.
Collapse
Affiliation(s)
- Hasina Afroz
- Institute for Global Food Security , Queen's University Belfast , David Keir Building, Malone Road , Belfast , BT9 5BN , United Kingdom
| | - Shiming Su
- Institute of Environment and Sustainable Development in Agriculture , Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture , Beijing 100081 , P.R. China
| | - Manus Carey
- Institute for Global Food Security , Queen's University Belfast , David Keir Building, Malone Road , Belfast , BT9 5BN , United Kingdom
| | - Andy A Meharg
- Institute for Global Food Security , Queen's University Belfast , David Keir Building, Malone Road , Belfast , BT9 5BN , United Kingdom
| | - Caroline Meharg
- Institute for Global Food Security , Queen's University Belfast , David Keir Building, Malone Road , Belfast , BT9 5BN , United Kingdom
| |
Collapse
|
4
|
Niemikoski H, Söderström M, Vanninen P. Detection of Chemical Warfare Agent-Related Phenylarsenic Compounds in Marine Biota Samples by LC-HESI/MS/MS. Anal Chem 2017; 89:11129-11134. [DOI: 10.1021/acs.analchem.7b03429] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hanna Niemikoski
- VERIFIN, Finnish Institute for Verification
of The Chemical Weapons Convention, Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Martin Söderström
- VERIFIN, Finnish Institute for Verification
of The Chemical Weapons Convention, Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Paula Vanninen
- VERIFIN, Finnish Institute for Verification
of The Chemical Weapons Convention, Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| |
Collapse
|
5
|
Sun Y, Liu G, Cai Y. Thiolated arsenicals in arsenic metabolism: Occurrence, formation, and biological implications. J Environ Sci (China) 2016; 49:59-73. [PMID: 28007180 DOI: 10.1016/j.jes.2016.08.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 06/06/2023]
Abstract
Arsenic (As) is a notoriously toxic pollutant of health concern worldwide with potential risk of cancer induction, but meanwhile it is used as medicines for the treatment of different conditions including hematological cancers. Arsenic can undergo extensive metabolism in biological systems, and both toxicological and therapeutic effects of arsenic compounds are closely related to their metabolism. Recent studies have identified methylated thioarsenicals as a new class of arsenic metabolites in biological systems after exposure of inorganic and organic arsenicals, including arsenite, dimethylarsinic acid (DMAV), dimethylarsinous glutathione (DMAIIIGS), and arsenosugars. The increasing detection of thiolated arsenicals, including monomethylmonothioarsonic acid (MMMTAV), dimethylmonothioarsinic acid (DMMTAV) and its glutathione conjugate (DMMTAVGS), and dimethyldithioarsinic acid (DMDTAV) suggests that thioarsenicals may be important metabolites and play important roles in arsenic toxicity and therapeutic effects. Here we summarized the reported occurrence of thioarsenicals in biological systems, the possible formation pathways of thioarsenicals, and their toxicity, and discussed the biological implications of thioarsenicals on arsenic metabolism, toxicity, and therapeutic effects.
Collapse
Affiliation(s)
- Yuzhen Sun
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guangliang Liu
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yong Cai
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China; Department of Chemistry and Biochemistry&Southeast Environmental Research Center, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|
6
|
Cullen WR, Liu Q, Lu X, McKnight-Whitford A, Peng H, Popowich A, Yan X, Zhang Q, Fricke M, Sun H, Le XC. Methylated and thiolated arsenic species for environmental and health research - A review on synthesis and characterization. J Environ Sci (China) 2016; 49:7-27. [PMID: 28007181 DOI: 10.1016/j.jes.2016.11.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 06/06/2023]
Abstract
Hundreds of millions of people around the world are exposed to elevated concentrations of inorganic and organic arsenic compounds, increasing the risk of a wide range of health effects. Studies of the environmental fate and human health effects of arsenic require authentic arsenic compounds. We summarize here the synthesis and characterization of more than a dozen methylated and thiolated arsenic compounds that are not commercially available. We discuss the methods of synthesis for the following 14 trivalent (III) and pentavalent (V) arsenic compounds: monomethylarsonous acid (MMAIII), dicysteinylmethyldithioarsenite (MMAIII(Cys)2), monomethylarsonic acid (MMAV), monomethylmonothioarsonic acid (MMMTAV) or monothio-MMAV, monomethyldithioarsonic acid (MMDTAV) or dithio-MMAV, monomethyltrithioarsonate (MMTTAV) or trithio-MMAV, dimethylarsinous acid (DMAIII), dimethylarsino-glutathione (DMAIII(SG)), dimethylarsinic acid (DMAV), dimethylmonothioarsinic acid (DMMTAV) or monothio-DMAV, dimethyldithioarsinic acid (DMDTAV) or dithio-DMAV, trimethylarsine oxide (TMAOV), arsenobetaine (AsB), and an arsenicin-A model compound. We have reviewed and compared the available methods, synthesized the arsenic compounds in our laboratories, and provided characterization information. On the basis of reaction yield, ease of synthesis and purification of product, safety considerations, and our experience, we recommend a method for the synthesis of each of these arsenic compounds.
Collapse
Affiliation(s)
- William R Cullen
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Qingqing Liu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Xiufen Lu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | | | - Hanyong Peng
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Aleksandra Popowich
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Xiaowen Yan
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Qi Zhang
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Michael Fricke
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Hongsui Sun
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - X Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2G3, Canada; Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada.
| |
Collapse
|
7
|
Naseri MT, Shamsipur M, Babri M, Saeidian H, Sarabadani M, Ashrafi D, Taghizadeh N. Determination of lewisite metabolite 2-chlorovinylarsonous acid in urine by use of dispersive derivatization liquid-liquid microextraction followed by gas chromatography–mass spectrometry. Anal Bioanal Chem 2014; 406:5221-30. [DOI: 10.1007/s00216-014-7733-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 02/17/2014] [Accepted: 02/27/2014] [Indexed: 12/01/2022]
|
8
|
Bhattacharjee P, Chatterjee D, Singh KK, Giri AK. Systems biology approaches to evaluate arsenic toxicity and carcinogenicity: an overview. Int J Hyg Environ Health 2013; 216:574-86. [PMID: 23340121 DOI: 10.1016/j.ijheh.2012.12.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 12/11/2012] [Accepted: 12/13/2012] [Indexed: 01/08/2023]
Abstract
Long term exposure to arsenic, either through groundwater, food stuff or occupational sources, results in a plethora of dermatological and non-dermatological health effects including multi-organ cancer and early mortality. Several epidemiological studies, across the globe have reported arsenic-induced health effects and cancerous outcomes; but the prevalence of such diseases varies depending on environmental factors (geographical location, exposure level), and genetic makeup (and variants thereof); which is further modulated by several other factors like ethnicity, age-sex, smoking status, diet, etc. It is also interesting to note that, chronic arsenic exposure to a similar extent, even among the same family members, result in wide inter-individual variations. To understand the adverse effect of this toxic metabolite on biological system (cellular targets), and to unravel the underlying molecular basis (at the level of transcript, proteome, or metabolite), a holistic, systems biology approach was taken. Due to the paradoxical nature and unavailability of any suitable animal model system; the literature review is primarily based on cell line and population based studies. Thus, here we present a comprehensive review on the systems biology approaches to explore the underlying mechanism of arsenic-induced carcinogenicity, along with our own observations and an overview of mitigation strategies and their effectiveness till date.
Collapse
Affiliation(s)
- Pritha Bhattacharjee
- Molecular and Human Genetics Division, Indian Institute of Chemical Biology, Kolkata, India
| | | | | | | |
Collapse
|
9
|
Schmidt AC, Mickein K. Qualitative and quantitative characterization of the arsenic-binding behaviour of sulfur-containing peptides and proteins by the coupling of reversed phase liquid chromatography to electrospray ionization mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2012; 47:949-961. [PMID: 22899503 DOI: 10.1002/jms.3025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Phenylarsenic-substituted cysteine-containing peptides and proteins were completely differentiated from their unbound original forms by the coupling of reversed phase liquid chromatography with electrospray ionization mass spectrometry. The analysis of biomolecules possessing structure-stabilizing disulfide bridges after reduction provides new insights into requirements concerning the accessibility of cysteine residues for reducing agents as well as for arsenic compounds in a spatial protein structure. Complementary binding studies performed using direct ESI-MS without chromatographic coupling in different solvent systems demonstrated that more than one binding site were activated for aprotinin and lysozyme in denaturing solvents because of a stronger defolding. From the intensities of the different charge states occurring in the mass spectra as well as from the LC elution behaviour, it can be deduced that the folding state of the arsenic-bound protein species resembles the native, oxidized conformation. In contrast, although the milk protein α-lactalbumin has several disulfide bridges, only one phenylarsenic moiety was bound under strongly denaturing conditions. Because of the charge state distribution in the ESI mass spectra, a conformational change to a molten globule structure is assumed. For the second considered milk protein ß-lactoglobulin, a noncovalent interaction with phenylarsine oxide was detected. In general, smaller apparent binding constants for the condensation reactions of the biomolecules with phenylarsine oxide leading to covalent arsenic-sulfur bindings were determined from direct injection ESI-MS measurements than from LC-ESI-MS coupling. The following order of binding affinities for one phenylarsenic group can be assumed from both ESI-MS and LC-ESI-MS: nonapeptide vasopressin > nonapeptide vasotocin > lysozyme > aprotinin > α-lactalbumin > thioredoxin. Kinetic investigations by LC-ESI-MS yielded a partial reaction order of 2 for vasopressin, Lys and α-lactalbumin and corresponding half-lives of 0.93, 2.56 and 123.5 min, respectively.
Collapse
Affiliation(s)
- Anne-Christine Schmidt
- Institute of Analytical Chemistry, Technical University Bergakademie Freiberg, Leipziger Straße 29, D-09599, Freiberg, Germany.
| | | |
Collapse
|