1
|
Kou C, Hu H, Tang Y, Luo Y, Han C, Bao Y, Guo Z, Niu L. Agent-free, highly sensitive, and simply operated Ag + sensor with molybdenum disulfide-based field effect transistor. Talanta 2025; 283:127141. [PMID: 39515060 DOI: 10.1016/j.talanta.2024.127141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/18/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Ag+, as a good bactericidal reagent, has been extensively used to prevent the growth and spread of bacteria and viruses. However, overcommit of Ag+ would leave residues in environments, which is toxic to the human body even under minimal exposure. In this case, a fast and high selective sensing method based on field effect transistors (FET) has been proposed for monitoring Ag+ in aqueous solutions. Through coordination interaction, Ag + could be spontaneously adsorbed on the surface of the sensing material MoS2 and affect its electronic carrier transport behavior. The MoS2-based FET sensor show outstanding sensing performance to Ag+ including short response time (60 s), good linear relationship (R2 = 0.97), low detection limit (10-10 mol/L) and high selectivity, which could meet the permissible criterion of Ag+ in drinking water by the World Health Organization (0.93 × 10-6 mol/L). This study will promote the application of FET sensors in environmental analysis, and provide important guidance to realize rapid, on-site or in-situ monitoring of heavy metals in aqueous solutions.
Collapse
Affiliation(s)
- Cuiyun Kou
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Key Laboratory of Optoelectronic Materials and Sensors in Guangdong Provincial Universities, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Haiguo Hu
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Ying Tang
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Key Laboratory of Optoelectronic Materials and Sensors in Guangdong Provincial Universities, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yiyu Luo
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Key Laboratory of Optoelectronic Materials and Sensors in Guangdong Provincial Universities, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Chenggong Han
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Key Laboratory of Optoelectronic Materials and Sensors in Guangdong Provincial Universities, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Yu Bao
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Key Laboratory of Optoelectronic Materials and Sensors in Guangdong Provincial Universities, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Zhinan Guo
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Key Laboratory of Optoelectronic Materials and Sensors in Guangdong Provincial Universities, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Li Niu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
2
|
Wu Y, Liu J, Li S, Jian R, Yuan X, Huang K. Construction of a triple-mode sensing platform for effective differentiation, speciation, and monitoring of mercury and methylmercury bioaccumulation in crayfish via cation exchange reaction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176416. [PMID: 39306121 DOI: 10.1016/j.scitotenv.2024.176416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/13/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Developing rapid and sensitive methods for monitoring inorganic mercury (Hg2+) and methylmercury (CH3Hg+) in crayfish is crucial for understanding the environmental impact of these contaminants. In this work, a novel tri-mode strategy was developed for highly sensitive monitoring of Hg2+ and CH3Hg+ bioaccumulation in crayfish by inductively coupled plasma mass spectrometry (ICP-MS)/ fluorescence /smartphone colorimetric (RGB) analysis without chromatographic separation. Cation exchange reaction (CER) was performed between Hg2+ and luminescent CdTe quantum dots (QDs), while CH3Hg+ unrealizable CER. The CH3Hg+ can be transformed to Hg2+ by simple UV irradiation, speciation analysis can be realized by detecting the fluorescence of CdTe QDs after incubation by Hg2+ and total Hg2+. In addition, the filtration of reacted CdTe QDs was carried out, ICP-MS was performed to detect exchanged Cd2+ by Hg2+ and total Hg2+, as well the smartphone RGB analysis was performed for membrane colorimetry. The limits of detection (LODs) of Hg2+ and CH3Hg+ for ICP-MS, fluorescence, and colorimetric (RGB) modes were 0.03 ng mL-1, 18 ng mL-1, and 0.9 μg mL-1 respectively. Density Functional Theory (DFT) was employed to validate the mechanism of the CER reaction. CdTe QDs array analysis with five different ligands was performed to eliminate potential ion interferences of Ag+ and Cu2+ that could occur during the CER reaction. The well-designed system was successfully utilized for monitoring trace Hg2+ and CH3Hg+ in crayfish fed Hg2+ and CH3Hg+ contaminative food over a two-week "uptake" period and a three-week "depuration" period. The results indicated that the Hg2+ uptake in different tissues was significantly different from that of CH3Hg+ in all tissues. There was evidence of Hg uptake from water via leaching from food, although the principal source of uptake was from food.
Collapse
Affiliation(s)
- Yiman Wu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Jie Liu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Shuqi Li
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Rui Jian
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Xin Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Ke Huang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China.
| |
Collapse
|
3
|
Hu O, Gong Y, Chang Y, Tan Y, Chen Z, Bi W, Jiang Z. Fluorescent and colorimetric dual-readout platform for tuberculosis point-of-care detection based on dual signal amplification strategy and quantum dot nanoprobe. Biosens Bioelectron 2024; 264:116641. [PMID: 39167885 DOI: 10.1016/j.bios.2024.116641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/17/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024]
Abstract
Rapid and accurate diagnosis of tuberculosis (TB) is of great significance to control the spread of this devastating infectious disease. In this work, a sensitive and low-cost point-of-care testing (POCT) detection platform for TB was developed based on recombinase polymerase amplification (RPA)-catalytic hairpin assembly (CHA)-assisted dual signal amplification strategy. This platform could achieve homogeneous fluorescent and visual diagnosis of TB by using CdTe quantum dots (QDs) signal reporter. In the presence of target DNA (IS1081 gene fragment), RPA amplicons blocked by short oligonucleotide strands could trigger CHA signal amplification, leading to the Ag+ releasing from C-Ag+-C structure and the fluorescence quenching of CdTe QDs by the released Ag+. Furthermore, the detection performance of CdTe QDs modified by 3-mercaptopropionic acid (MPA) or thiomalic acid (TMA) (MPA-capped QDs and TMA-capped QDs) was systematically compared. Experimental results demonstrated that TMA-capped QDs exhibited better detection sensitivity due to their stronger interaction with Ag+. The limits of detection (LODs) of fluorescence and visual analysis were as low as 0.13 amol L-1 and 0.33 amol L-1. This method was successfully applied to the clinical sputum samples from 36 TB patients and 20 healthy individuals, and its quantitative results were highly consistent with those obtained by real-time fluorescent quantitative polymerase chain reaction (RT-qPCR). The proposed approach has the advantages of high sensitivity and specificity, simple operation and low cost, and is expected to be applied in clinical TB screening and diagnosis.
Collapse
Affiliation(s)
- Ou Hu
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou 510630, PR China; Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research of China, Jinan University, Guangzhou 510632, PR China; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Yingyu Gong
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research of China, Jinan University, Guangzhou 510632, PR China
| | - Yuexiang Chang
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research of China, Jinan University, Guangzhou 510632, PR China
| | - Yaoju Tan
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou 510095, PR China
| | - Zuanguang Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China; School of Health Medicine, Guangzhou Huashang College, Guangzhou 511300, PR China.
| | - Wei Bi
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou 510630, PR China.
| | - Zhengjin Jiang
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research of China, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
4
|
Zhou Z, Cen J, Jiang N, Sun Y, Li Z, Yang L. A ratiometric fluorescent nanoprobe based on CdSe quantum dots for the detection of Ag + in environmental samples and living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 290:122302. [PMID: 36603280 DOI: 10.1016/j.saa.2022.122302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
With the widespread application of Ag+ in modern life and industry, the potential hazardous effects of Ag+ to environment and humans have attracted great concerns. Thus, effective and rapid strategies for Ag+ detection are highly desirable. In this paper, a novel ratiometric fluorescence sensor using CdSe quantum dots (QDs) has been constructed for sensitive and selective detection of Ag+, which is based on the formation of Ag2Se QDs. CdSe QDs were initially prepared and showed single wavelength emission at 510 nm. When Ag+ exists, a rising peak appeared at 650 nm and the emission at 510 nm declined, exhibiting distinct ratiometric fluorescence emission (I650/I510) characteristic with a linear response over the Ag+ concentration range of 0.01-4 μM. Significantly, the fluorescence changed from green to red. The detection limit of the constructed sensor is 1.4 nM. Furthermore, the sensing assay can be successfully applied to detect Ag+ in real water samples and living cells.
Collapse
Affiliation(s)
- Zhiqiang Zhou
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Jianfang Cen
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Naijia Jiang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Yu Sun
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Zhouyang Li
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Liyun Yang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China.
| |
Collapse
|
5
|
Liu X, Li J, Wen T, Li Z, Wang X, Li M, Ma P, Song D, Fei Q. Copper ion ratio chemiluminescence probe based on chemiluminescence resonance energy transfer. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
6
|
Speciation analysis of silver ions and nanoparticles using humic-acid-modified silica and ICP-OES. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02414-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Jian R, Hu K, Guo Q, Zhao L, Yu H, Huang K. Speciation analysis of silver ions and silver nanoparticles in commercial antibacterial products by a self-constructed fluorescent spectrophotometer. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Wang X, Chen X, Zhou R, Hu P, Huang K, Chen P. Filter-Assisted Separation of Multiple Nanomaterials: Mechanism and Application in Atomic/Mass Spectrometry/Fluorescence Label-Free Multimode Bioassays. Anal Chem 2021; 93:3889-3897. [PMID: 33595278 DOI: 10.1021/acs.analchem.0c04562] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Atomic spectrometry (AS) has been widely used in bioassay, but it requires steps to immobilize or separate the signal molecules. In this work, based on the phenomenon that the filter membrane can selectively separate multiple nanomaterials (nanoparticles (NPs) and quantum dots (QDs)) and its related ions, including poly(thymine)-templated Cu NPs and free Cu2+, Ag NPs and free Ag+, CdTe QDs and Cd2+, we constructed multimode and label-free biosensors by chemical vapor generation-atomic fluorescence spectrometry (CVG-AFS), inductively coupled plasma mass spectrometry (ICP-MS), and fluorescence. In this strategy, terminal deoxynucleotidyl transferase (TdT) and polynucleotide kinase (PNK), H2O2, and mucin 1 can be sensitively detected using Cu2+, Ag+, and Cd2+ as the signal probe, respectively. As a result, TdT and T4 PNK in single cells level can be accurately quantified. In addition, the possible separation mechanism of filter membrane was proposed, both Donnan repulsion by charged functional layer and entrapment effect by nanomaterials size contributed to the outstanding separation performance. Subsequently, on the basis that CdTe QDs can selectively identify Cu NPs/Cu2+, Ag NPs/Ag+, and C-Ag+-C/Ag+, cation-exchange reaction (CER) was introduced in this platform due to its unique advantages, including improving the sensitivity of the above system (an order of magnitude), converting the non-CVG metal elements into CVG elements, and using low-cost AFS to substitute the high-cost ICP-MS. In addition, we performed theoretical calculations of the selective CER using density functional theory (DFT). Therefore, this label-free and simple separation AS/ICP-MS sensing platform shows great potential for biomarker analysis.
Collapse
Affiliation(s)
- Xiu Wang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Xin Chen
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Ronghui Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Pingyue Hu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Ke Huang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Piaopiao Chen
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Med+X Center for Manufacturing, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| |
Collapse
|
9
|
Li K, Yang H, Yuan X, Zhang M. Recent developments of heavy metals detection in traditional Chinese medicine by atomic spectrometry. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105726] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Antibacterial mechanism for inactivation of E. Coli by AgNPs@polydoamine/titania nanotubes via speciation analysis of silver ions and silver nanoparticles by cation exchange reaction. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
|
12
|
Chen P, Jiang X, Huang K, Hu P, Li X, Wei L, Liu W, Wei L, Tao C, Ying B, Wei X, Geng J. Multimode MicroRNA Sensing via Multiple Enzyme-Free Signal Amplification and Cation-Exchange Reaction. ACS APPLIED MATERIALS & INTERFACES 2019; 11:36476-36484. [PMID: 31532182 DOI: 10.1021/acsami.9b15594] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Piaopiao Chen
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Xin Jiang
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Ke Huang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Pingyue Hu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Xinqiong Li
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Long Wei
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Wangzhong Liu
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Liangwan Wei
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Chuanmin Tao
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Binwu Ying
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Xiawei Wei
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Jia Geng
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| |
Collapse
|
13
|
|
14
|
Chen P, Huang K, Dai R, Sawyer E, Sun K, Ying B, Wei X, Geng J. Sensitive CVG-AFS/ICP-MS label-free nucleic acid and protein assays based on a selective cation exchange reaction and simple filtration separation. Analyst 2019; 144:2797-2802. [PMID: 30882111 DOI: 10.1039/c8an01926f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nowadays, label-free atomic spectrometric bioassays are attracting great research interest because of their advantages of low cost, simple design and operation, etc. Herein, a novel and simple chemical vapor generation-atomic fluorescence spectrometry (CVG-AFS)/inductively coupled plasma-mass spectrometry (ICP-MS) label-free detection method is presented for highly sensitive and selective assay of DNA and proteins. This work mainly combined a phenomenon that CdTe quantum dots (QDs) can be used to selectively differentiate free Hg2+ and the T-Hg2+-T complex, with the use of simple membrane filtration separation to improve the performance of the label-free bioassay methods. Upon hybridization with the DNA/protein (carcinoembryonic antigen, CEA) target, the T-Hg2+-T hairpin structure was opened and Hg2+ was released; this initiated the cation exchange reaction between Hg2+ and CdTe QDs which released Cd2+ simultaneously. Subsequently, the free Cd2+ was separated by the filtration membrane without separating the CdTe QDs, which could then be separated from the sample matrices for the CVG-AFS/ICP-MS assay. Under the optimal conditions, this method possessed high sensitivity for DNA and CEA determination with limits of detection (LODs) of 0.2 nM and 0.2 ng mL-1, and linear dynamic ranges of 1-160 nM and 0.5-20 ng mL-1, respectively, and exhibited excellent DNA sequence specificity and protein selectivity. This method preserves the advantages of the label-free atomic spectrometric bioassay, and combined with the selective cation exchange reaction and simple filtration separation to improve the performance.
Collapse
Affiliation(s)
- Piaopiao Chen
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Separation of silver ions and silver nanoparticles by silica based-solid phase extraction prior to ICP-OES determination. Microchem J 2019. [DOI: 10.1016/j.microc.2018.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Dai R, Hu P, Wang X, Wang S, Song X, Huang K, Chen P. Visual/CVG-AFS/ICP-MS multi-mode and label-free detection of target nucleic acids based on a selective cation exchange reaction and enzyme-free strand displacement amplification. Analyst 2019; 144:4407-4412. [PMID: 31210203 DOI: 10.1039/c9an00642g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Visual/CVG-AFS/ICP-MS three-mode detection of DNA based on the selective cation exchange reaction and enzyme-free strand displacement amplification.
Collapse
Affiliation(s)
- Rui Dai
- College of Chemistry and Material Science
- Sichuan Normal University
- Chengdu
- China
| | - Pingyue Hu
- College of Chemistry and Material Science
- Sichuan Normal University
- Chengdu
- China
| | - Xiu Wang
- College of Chemistry and Material Science
- Sichuan Normal University
- Chengdu
- China
| | - Shixin Wang
- College of Chemistry and Material Science
- Sichuan Normal University
- Chengdu
- China
| | - Xinmei Song
- College of Chemistry and Material Science
- Sichuan Normal University
- Chengdu
- China
| | - Ke Huang
- College of Chemistry and Material Science
- Sichuan Normal University
- Chengdu
- China
| | - Piaopiao Chen
- Department of Laboratory Medicine
- State Key Laboratory of Biotherapy and Cancer Center
- West China Hospital
- Sichuan University and Collaborative Innovation Center for Biotherapy
- Chengdu
| |
Collapse
|
17
|
Designing an electrochemical aptasensor based on immobilization of the aptamer onto nanocomposite for detection of the streptomycin antibiotic. Microchem J 2018. [DOI: 10.1016/j.microc.2018.05.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|