1
|
Fouilloux P, Assifaoui A, Rachocki A, Karbowiak T, Bodart PR. In-situ speciation and estimation of iron(II) and iron(III) contents in anisotropic polysaccharide-based hydrogel by 1H low-field nuclear magnetic resonance. Int J Biol Macromol 2023; 253:126307. [PMID: 37573921 DOI: 10.1016/j.ijbiomac.2023.126307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/28/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
This article aims to quantify and differentiate in-situ iron(II) and/or iron(III) in heterogeneous polygalacturonate hydrogels using the 1H-NMR relaxometry technique. This holds significant importance, for example, in addressing iron-deficiency anemia through the oral administration of iron(II) supplements. The NMR dispersion profiles of the gels exhibited markedly distinct relaxation behaviors corresponding to the different iron oxidation states. At 20 MHz, two primary relaxation mechanisms must be considered: relaxation arising from water molecules confined within the polygalacturonate fiber mesh and paramagnetic relaxation due to iron cations. When iron(III) serves as the cross-linking agent, paramagnetic interaction dominates the relaxation, while with iron(II) as the cross-linker, both mechanisms have to be considered. To distinguish labile from structuring iron, we monitored the evolution of iron concentrations within the gels during successive washes using NMR and atomic absorption spectroscopy. Eventually, a gel containing both iron(II) and iron(III) was analyzed, and successful differentiation between the two cations was achieved. NMR relaxometry demonstrates powerful capabilities in terms of in-situ experiments, rapid results, speciation (iron(II)/iron(III)), and quantification (labile/ bridging iron).
Collapse
Affiliation(s)
- Pierre Fouilloux
- Univ. Bourgogne Franche-Comté, Institut Agro, UMR PAM A02.102, 1 Esplanade Erasme, 21000 Dijon, France
| | - Ali Assifaoui
- Univ. Bourgogne Franche-Comté, Institut Agro, UMR PAM A02.102, 1 Esplanade Erasme, 21000 Dijon, France.
| | - Adam Rachocki
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznan, Poland
| | - Thomas Karbowiak
- Univ. Bourgogne Franche-Comté, Institut Agro, UMR PAM A02.102, 1 Esplanade Erasme, 21000 Dijon, France
| | - Philippe R Bodart
- Univ. Bourgogne Franche-Comté, Institut Agro, UMR PAM A02.102, 1 Esplanade Erasme, 21000 Dijon, France.
| |
Collapse
|
2
|
Kohler MC, Li F, Dong Z, Amineh RK. Real-Time Nitrate Ion Monitoring with Poly(3,4-ethylenedioxythiophene) (PEDOT) Materials. SENSORS (BASEL, SWITZERLAND) 2023; 23:7627. [PMID: 37688083 PMCID: PMC10490648 DOI: 10.3390/s23177627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/10/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
Nitrate (NO3) pollution in groundwater, caused by various factors both natural and synthetic, contributes to the decline of human health and well-being. Current techniques used for nitrate detection include spectroscopic, electrochemical, chromatography, and capillary electrophoresis. It is highly desired to develop a simple cost-effective alternative to these complex methods for nitrate detection. Therefore, a real-time poly (3,4-ethylenedioxythiophene) (PEDOT)-based sensor for nitrate ion detection via electrical property change is introduced in this study. Vapor phase polymerization (VPP) is used to create a polymer thin film. Variations in specific parameters during the process are tested and compared to develop new insights into PEDOT sensitivity towards nitrate ions. Through this study, the optimal fabrication parameters that produce a sensor with the highest sensitivity toward nitrate ions are determined. With the optimized parameters, the electrical resistance response of the sensor to 1000 ppm nitrate solution is 41.79%. Furthermore, the sensors can detect nitrate ranging from 1 ppm to 1000 ppm. The proposed sensor demonstrates excellent potential to detect the overabundance of nitrate ions in aqueous solutions in real time.
Collapse
Affiliation(s)
- Michael C. Kohler
- Department of Electrical and Computer Engineering, New York Institute of Technology, College of Engineering and Computing Sciences, Old Westbury, NY 11568, USA;
| | - Fang Li
- Department of Mechanical Engineering, New York Institute of Technology, College of Engineering and Computing Sciences, Old Westbury, NY 11568, USA
| | - Ziqian Dong
- Department of Electrical and Computer Engineering, New York Institute of Technology, College of Engineering and Computing Sciences, New York, NY 10023, USA;
| | - Reza K. Amineh
- Department of Electrical and Computer Engineering, New York Institute of Technology, College of Engineering and Computing Sciences, New York, NY 10023, USA;
| |
Collapse
|
3
|
Gossuin Y, Duez P, Blankert B, Masson C, Laurent S, Rousseau C. Nuclear magnetic resonance relaxometry to monitor chromium (VI) reduction by hydrogen peroxide, ascorbic acid, and aluminum powder. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2023; 61:284-295. [PMID: 36609849 DOI: 10.1002/mrc.5332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
The reduction of K2 Cr2 O7 solutions by H2 O2 was studied by nuclear magnetic resonance (NMR) relaxometry and UV-vis spectroscopy in HCl/KCl buffer (pH 2), NaCl/glycine/HCl buffer (pH 3), and sodium acetate/acetic acid buffer (pH 4). Because of Cr(III) paramagnetism, 1/T1 and 1/T2 of the solutions increase during the reduction of diamagnetic Cr(VI). This increase is proportional to the produced Cr(III) concentration. Using different initial H2 O2 concentrations, partially reduced Cr(VI) samples were prepared and studied by T1 and T2 relaxometry and by UV-vis spectroscopy. The correlation between the relaxation rates and the concentration of Cr(VI) remaining in the sample, measured by spectroscopy, was excellent. It was possible, thanks to the measurement of T2 , to study the kinetics of the reduction of K2 Cr2 O7 by H2 O2 in the pH 3 and pH 4 buffers. The reduction of Cr(VI) by ascorbic acid was successfully monitored by NMR relaxometry in the pH 2 buffer. The presence of complexing molecules/ions was shown to drastically influence the nuclear magnetic relaxation dispersion profiles of reduced K2 Cr2 O7 solutions: Both relaxation rates are divided by ~5 when citrate or acetate ions are present and by ~3 in the presence of ascorbic acid. Therefore, the comparison of relaxation results obtained in different reaction mixtures must be done carefully. When all the solutions are set to pH 0, which prevents any complexation, the longitudinal and transverse relaxation rates of all samples become comparable. Finally, as a proof of concept for a turbid solution, the kinetics of the reduction of a K2 Cr2 O7 solution by aluminum powder in the pH 2 buffer was successfully monitored.
Collapse
Affiliation(s)
| | - Pierre Duez
- Therapeutic Chemistry and Pharmacognosy Unit, UMONS, Mons, Belgium
| | | | | | - Sophie Laurent
- General, Organic and Biomedical Chemistry Unit, UMONS, Mons, Belgium
| | | |
Collapse
|
4
|
Use of Time Domain Nuclear Magnetic Resonance Relaxometry to Monitor the Effect of Magnetic Field on the Copper Corrosion Rate in Real Time. MAGNETOCHEMISTRY 2022. [DOI: 10.3390/magnetochemistry8040040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The corrosion of metals is a major problem of modern societies, demanding new technologies and studies to understand and minimize it. Here we evaluated the effect of a magnetic field (B) on the corrosion of copper in aqueous HCl solution under open circuit potential. The corrosion product, Cu2+, is a paramagnetic ion and its concentration in the solution was determined in real time in the corrosion cell by time-domain NMR relaxometry. The results show that the magnetic field (B = 0.23 T) of the time-domain NMR instrument reduces the corrosion rate by almost 50%, in comparison to when the corrosion reaction is performed in the absence of B. Atomic force microscopy and X-ray diffraction results of the analysis of the corroded surfaces reveal a detectable CuCl phase and an altered morphology when B is present. The protective effect of B was explained by magnetic forces that maintain the Cu2+ in the solution/metal interface for a longer time, hindering the arrival of the new corrosive agents, and leading to the formation of a CuCl phase, which may contribute to the rougher surface. The time-domain NMR method proved to be useful to study the effect of B in the corrosion of other metals or other corrosive liquid media when the reactions produce or consume paramagnetic ions.
Collapse
|
5
|
One-Pot Synthesis of Carboxymethylcellulose-Templated Copper-NPs for Heterocatalytic Huisgen-Click Reactions on Lignocellulosic Bamboo Slices. Catal Letters 2022. [DOI: 10.1007/s10562-022-03923-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
6
|
Quantification of manganous ions in wine by NMR relaxometry. Talanta 2020; 209:120561. [PMID: 31892047 DOI: 10.1016/j.talanta.2019.120561] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 11/02/2019] [Accepted: 11/11/2019] [Indexed: 12/31/2022]
Abstract
Proton relaxation in model and real wines is investigated for the first time by fast field cycling NMR relaxometry. The relaxation mechanism unambiguously originates form proton interaction with paramagnetic ions naturally present in wines. Profiles of a white Chardonnay wine from Burgundy, a red Medoc, and model wines are well reproduced by Solomon-Bloembergen-Morgan equations. Relaxation is primarily governed by interactions with Mn2+. A straightforward model-independent quantification of the manganese ion concentration (down to few tens of μg/L) is proposed.
Collapse
|
7
|
Babos DV, Garcia RHDS, Colnago LA, Pereira-Filho ER. A simple, rapid, green and non-destructive 19F time-domain NMR method for directly fluorine determination in powder of mineral supplements for cattle. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Monitoring Electrochemical Reactions in Situ with Low Field NMR: A Mini-Review. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9030498] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The number of applications of time domain NMR using low-field spectrometers in research and development has been steadily increasing in recent years with applications ranging from quality control of industrial products to the study of physical and chemical properties of a wide array of solid and liquid samples to, most recently, electrochemical studies. In this mini-review we summarize the progress that has been achieved in the coupling between time domain NMR (using low-field spectrometers) and electrochemistry and how the challenges that this coupling poses have been overcome over the years. We also highlight the effect that the static magnetic field of the NMR spectrometer has on the electrochemical systems.
Collapse
|
9
|
Romanel SA, Cunha DA, Castro EV, Barbosa LL. Time domain nuclear magnetic resonance (TD-NMR): A new methodology to quantify adulteration of gasoline. Microchem J 2018. [DOI: 10.1016/j.microc.2018.03.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|