1
|
Li Z, Lin B, Zhang S, Ding C, Sun S, Pan M. A cellulose nanocrystal-based dual response of photonic colors and fluorescence for sensitive benzene gas detection. Int J Biol Macromol 2024; 273:132706. [PMID: 38825294 DOI: 10.1016/j.ijbiomac.2024.132706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/17/2024] [Accepted: 05/26/2024] [Indexed: 06/04/2024]
Abstract
Benzene, as a common volatile organic compound, represents serious risk to human health and environment even at low level concentration. There is an urgent concern on visualized, sensitive and real time detection of benzene gases. Herein, by doping Fe3+ and graphene quantum dots (GQDs), a cellulose nanocrystal (CNC) chiral nematic film was designed with dual response of photonic colors and fluorescence to benzene gas. The chiral nematic CNC/Fe/GQDs film could respond to benzene gas changes by reversible motion. Moreover, chiral nematic film also displays reversible responsive to humidity changes. The resulting CNC/Fe/GQDs chiral nematic film showed excellent response performance at benzene gas concentrations of 0-250 mg/m3. The maximal reflection wavelength film red shifted from 576 to 625 nm. Furthermore, structural color of CNC/Fe/GQDs chiral nematic film change at 44 %, 54 %, 76 %, 87 %, and 99 % relative humidity. Interestingly, due to the stability of GQDs to water molecules, CNC/Fe/GQDs chiral nematic film exhibit fluorescence response to benzene gas even in high humidity (RH = 99 %) environment. Besides, we further developed a smartphone-based response network system for quantitively determinization and signal transformation. This work provides a promising routine to realize a new benzene gas response regime and promotes the development of real-time benzene gas detection.
Collapse
Affiliation(s)
- Zhaolin Li
- College of Materials Science and Engineering, Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Bingqun Lin
- College of Materials Science and Engineering, Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Shuai Zhang
- College of Materials Science and Engineering, Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Chunxiang Ding
- College of Materials Science and Engineering, Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Sijia Sun
- College of Materials Science and Engineering, Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Mingzhu Pan
- College of Materials Science and Engineering, Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
2
|
Kori AH, Jagirani MS, Soylak M. Graphene-Based Nanomaterials: A Sustainable Material for Solid-Phase Microextraction (SPME) for Environmental Applications. ANAL LETT 2023. [DOI: 10.1080/00032719.2023.2173221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Abdul Hameed Kori
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey
- National Center of Excellence in Analytical Chemistry, University of Sindh, Sindh, Pakistan
| | - Muhammad Saqaf Jagirani
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey
- National Center of Excellence in Analytical Chemistry, University of Sindh, Sindh, Pakistan
| | - Mustafa Soylak
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey
- Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey
- Turkish Academy of Sciences (TUBA), Cankaya, Ankara, Turkey
| |
Collapse
|
3
|
Wang H, Yang M, Wang D, Li K, Wang S, Liu H. Ionic liquid-functionalized poly- N-phenylpyrrole coated on a NiTi alloy substrate for highly efficient solid-phase microextraction. NEW J CHEM 2022. [DOI: 10.1039/d1nj05398a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
TiO2–NiO composite nanoflakes were in situ grown, followed by electrochemical polymerization of [C4MIM]PF6@PPPy as a fiber coating for solid phase microextraction.
Collapse
Affiliation(s)
- Huiju Wang
- College of Chemistry and Chemical Engineering, Qinghai Minzu University, Xining 810007, China
- Key Lab of Resource Chemistry & Environmental Protection of Qinhai, Xining 810007, China
| | - Minghong Yang
- College of Chemistry and Chemical Engineering, Qinghai Minzu University, Xining 810007, China
| | - Dongdong Wang
- College of Chemistry and Chemical Engineering, Qinghai Minzu University, Xining 810007, China
| | - Kang Li
- College of Chemistry and Chemical Engineering, Qinghai Minzu University, Xining 810007, China
| | - Shoujia Wang
- College of Chemistry and Chemical Engineering, Qinghai Minzu University, Xining 810007, China
| | - Hailan Liu
- College of Chemistry and Chemical Engineering, Qinghai Minzu University, Xining 810007, China
| |
Collapse
|
4
|
Peng S, Huang X, Huang Y, Huang Y, Zheng J, Zhu F, Xu J, Ouyang G. Novel solid-phase microextraction fiber coatings: A review. J Sep Sci 2021; 45:282-304. [PMID: 34799963 DOI: 10.1002/jssc.202100634] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 12/27/2022]
Abstract
The materials used for the fabrication of solid-phase microextraction fiber coatings in the past five years are summarized in the current review, including carbon, metal-organic frameworks, covalent organic frameworks, aerogel, polymer, ionic liquids/poly (ionic liquids), metal oxides, and natural materials. The preparation approaches of different coatings, such as sol-gel technique, in-situ growth, electrodeposition, and glue methods, are briefly reviewed together with the evolution of the supporting substrates. In addition, the limitations of the current coatings and the future development directions of solid-phase microextraction are presented.
Collapse
Affiliation(s)
- Sheng Peng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xiaoyu Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yuyan Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yiquan Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Juan Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jianqiao Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
5
|
Javanmardi H, Naderi M, Bagheri H. A stable nitrogen-rich zinc-based metal organic framework to investigate the structural similarity effect on the sorption efficiency of nitrogen-containing compounds. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Delińska K, Rakowska PW, Kloskowski A. Porous material-based sorbent coatings in solid-phase microextraction technique: Recent trends and future perspectives. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116386] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Wei M, Zheng F, Song X, Li R, Pan X, Guo G, Yu Q, Feng Y. Comprehensive Analysis of Volatile Compounds in Mouthpiece Cigarette Adhesive by Coupling Headspace with Gas Chromatography-Mass Spectrometry. J AOAC Int 2021; 104:712-718. [PMID: 33252696 DOI: 10.1093/jaoacint/qsaa160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 11/14/2022]
Abstract
BACKGROUND Some volatile compounds in mouthpiece cigarette adhesive emit irritating odors and affect the taste of smoking cigarettes. Therefore, it is necessary to monitor the volatile compounds in mouthpiece cigarette adhesive. OBJECTIVES A rapid and simple analytical method of volatile compounds in mouthpiece cigarette adhesive was established. METHODS In this study, headspace (HS) injection coupled with GC-MS was utilized for qualitative and quantitative analysis. Initially, the volatile compounds in mouthpiece cigarette adhesives were detected by HS-GC-MS, followed by spectrum library retrieval. The detected compounds with the similarity to a spectrum library of more than 85% were further identified by comparing the retention time and mass spectra of the detected volatile compounds and those of the corresponding standard samples. The quantitative analysis of nine identified volatile compounds was performed. RESULTS Eleven volatile compounds in the mouthpiece cigarette adhesive were accurately identified. The quantitative analytical method of nine volatile compounds in mouthpiece cigarette adhesive was validated to have good linearities (R2 > 0.9932) within the range of 20-5000 ng/g. The detection limits of 9 compounds were within the range of 3.1-147.7 ng/g. The intra- and inter-day relative standard deviations were less than 19.8%. The recoveries of these 9 compounds spiked into mouthpiece cigarette adhesive were 68.1-108.3%. CONCLUSIONS The proposed method is rapid, simple, and accurate for qualitative and quantitative analysis of volatile compounds in the mouthpiece cigarette adhesive. HIGHLIGHTS The developed analytical method is expected to be used to monitor volatile compounds in various adhesives.
Collapse
Affiliation(s)
- Min Wei
- China Tobacco Hubei Industrial Co., Ltd, Wuhan 430040, China
| | - Feng Zheng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xuyan Song
- China Tobacco Hubei Industrial Co., Ltd, Wuhan 430040, China
| | - Ran Li
- China Tobacco Hubei Industrial Co., Ltd, Wuhan 430040, China
| | - Xi Pan
- China Tobacco Hubei Industrial Co., Ltd, Wuhan 430040, China
| | - Guoning Guo
- China Tobacco Hubei Industrial Co., Ltd, Wuhan 430040, China
| | - Qiongwei Yu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yuqi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
8
|
Guo Z, Feng Y, Zhang C, Huang G, Chi J, Yao Q, Zhang G, Chen X. Three dimensional graphene materials doped with heteroatoms for extraction and adsorption of environmental pollutants in wastewater. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2021; 39:17-43. [PMID: 33554725 DOI: 10.1080/26896583.2020.1863725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Environmental pollution by heavy metal ions, organic pollutants, oils, pesticides or dyes is a ubiquitous problem adversely affecting human health and environmental ecology. Development and application novel adsorbents in full-scale treatment systems with effectiveness properties could effective ways to facilitate the extraction and adsorption of environment pollutants from wastewater. Graphene materials have drawn much attention due to their extraordinary electron mobilities, high surface areas, good thermal conductivities, and excellent mechanical properties. Three-dimensional graphene materials can provide the inherent advantages of 2D graphene sheets and exhibit micro/nanoporous structures, increased specific surface areas, high electron conductivities, fast mass transport kinetics, and strong mechanical strength. Potential applications for 3D graphene materials include environmental remediation, chemical and biological sensing, catalysis, and super capacitors. Recent advances in the applications of 3D functionalized graphene materials (3D FGMs) doped with heteroatoms for the extraction and adsorption of environmental pollutants in wastewater are summarized in this review.
Collapse
Affiliation(s)
- Zhiyong Guo
- Institute of Analytical Technology and Smart Instruments and College of Environment and Public Healthy, Xiamen Huaxia University, Xiamen, China
- Key Laboratory of environmental monitoring, Universities of Fujian Province, Fujian Province, China
| | - Yufeng Feng
- The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Chen Zhang
- Institute of Analytical Technology and Smart Instruments and College of Environment and Public Healthy, Xiamen Huaxia University, Xiamen, China
| | - Guihua Huang
- Institute of Analytical Technology and Smart Instruments and College of Environment and Public Healthy, Xiamen Huaxia University, Xiamen, China
| | - Jinxin Chi
- Institute of Analytical Technology and Smart Instruments and College of Environment and Public Healthy, Xiamen Huaxia University, Xiamen, China
| | - Qiuhong Yao
- Institute of Analytical Technology and Smart Instruments and College of Environment and Public Healthy, Xiamen Huaxia University, Xiamen, China
| | - Guofeng Zhang
- Baotai Biological Technology Co. Ltd of Xiamen, Xiamen, China
| | - Xi Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| |
Collapse
|
9
|
Zhang L, Jiang R, Li W, Muir DCG, Zeng EY. Development of a solid-phase microextraction method for fast analysis of cyclic volatile methylsiloxanes in water. CHEMOSPHERE 2020; 250:126304. [PMID: 32120150 DOI: 10.1016/j.chemosphere.2020.126304] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/31/2020] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
Cyclic volatile methylsiloxanes (cVMS) are widely used in consumer products and commonly detected in the environment. There are challenges in the analysis of cVMS because of their ubiquitous use which can introduce high background contamination. The current study introduces a sample preparation method based on headspace of solid-phase microextraction (SPME) for monitoring the cVMS in waters. Efforts were made to reduce the background contamination during sample preparation and instrument analysis. A laboratory prepared MIL-101 coating was prepared using polysulfone instead of polydimethylsiloxane as adhesive to avoid the contamination. The extraction performance of the MIL-101 fiber was optimized and evaluated. The optimized extraction time and temperature were 60 min and 40 °C, respectively. The method quantification limits of the MIL-101 fiber for octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5) and dodecylcyclohexasiloxane (D6) in water were 0.15 ng mL-1, 0.14 ng mL-1, and 0.27 ng mL-1, respectively. The extraction efficiency of the proposed MIL-101 fiber was comparable to the commercial polydimethylsiloxane/divinylbenzene fiber. The developed method was applied to analyze the cVMS in wastewater treatment plant and the concentrations in the barscreen and in the aeration tank ranged from 0.73 to 3.3 ng mL-1 and 7.74-85.1 ng mL-1, respectively. The MIL-101 fiber was also applied to study the photodegradation of the cVMS in water under simulated sunlight. Approximately 25%, 20%, and 45% of D4, D5, and D6, respectively, were degraded after 10 h exposure.
Collapse
Affiliation(s)
- Lifang Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Ruifen Jiang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China.
| | - Wanbin Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Derek C G Muir
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China; Environment and Climate Change Canada, 867 Lakeshore Road, Burlington, Ontario, L7S1A1, Canada
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| |
Collapse
|
10
|
Recent Applications and Newly Developed Strategies of Solid-Phase Microextraction in Contaminant Analysis: Through the Environment to Humans. SEPARATIONS 2019. [DOI: 10.3390/separations6040054] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The present review aims to describe the recent and most impactful applications in pollutant analysis using solid-phase microextraction (SPME) technology in environmental, food, and bio-clinical analysis. The covered papers were published in the last 5 years (2014–2019) thus providing the reader with information about the current state-of-the-art and the future potential directions of the research in pollutant monitoring using SPME. To this end, we revised the studies focused on the investigation of persistent organic pollutants (POPs), pesticides, and emerging pollutants (EPs) including personal care products (PPCPs), in different environmental, food, and bio-clinical matrices. We especially emphasized the role that SPME is having in contaminant surveys following the path that goes from the environment to humans passing through the food web. Besides, this review covers the last technological developments encompassing the use of novel extraction coatings (e.g., metal-organic frameworks, covalent organic frameworks, PDMS-overcoated fiber), geometries (e.g., Arrow-SPME, multiple monolithic fiber-SPME), approaches (e.g., vacuum and cold fiber SPME), and on-site devices. The applications of SPME hyphenated with ambient mass spectrometry have also been described.
Collapse
|
11
|
Rasheed T, Adeel M, Nabeel F, Bilal M, Iqbal HMN. TiO 2/SiO 2 decorated carbon nanostructured materials as a multifunctional platform for emerging pollutants removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:299-311. [PMID: 31229826 DOI: 10.1016/j.scitotenv.2019.06.200] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/08/2019] [Accepted: 06/12/2019] [Indexed: 02/05/2023]
Abstract
Aquatic ecosystem contaminated with hazardous pollutants has become a high priority global concern leading to serious economic and environmental damage. Among various treatment approaches, carbon nanostructured materials have received particular interest as a novel platform for emerging pollutants removal owing to their unique chemical and electrical properties, biocompatibility, high scalability, and infinite functionalization possibility with an array of inorganic nanomaterials and bio-molecules. Within this framework, carbon nanotubes (CNTs) are widely used due to their hollow and layered structure and availability of large specific surface area for the incoming contaminants. Carbon nanotubes can be used either as single-walled, multi-walled, or functionalized nanoconstructs. TiO2/SiO2-functionalized CNTs are among the most promising heterogeneous photocatalytic candidates for the degradation of a range of organic compounds, heavy metals reduction, and selective oxidative reactions. Herein, we reviewed recent development in the application of TiO2 and SiO2 functionalized nanostructured carbon materials as potential environmental candidates. After a brief overview of synthesis and properties of CNTs, we explicitly discussed the potential applications of TiO2/SiO2 functionalized CNTs for the remediation of a variety of environmentally-related pollutants of high concern, including synthetic dyes or dye-based hazardous waste effluents, as polycyclic aromatic hydrocarbons (PAHs), pharmaceutically active compounds, pesticides, toxic heavy elements, remediation of metal-contaminated soil, and miscellaneous organic contaminants. The work is wrapped up by giving information on current challenges and recommended guidelines about future research in the field bearing in mind the conclusions of the current review.
Collapse
Affiliation(s)
- Tahir Rasheed
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Adeel
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Faran Nabeel
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico.
| |
Collapse
|
12
|
Farrokhzadeh S, Razmi H. Use of chicken feet yellow membrane as a biosorbent in miniaturized solid phase extraction for determination of polycyclic aromatic hydrocarbons in several real samples. Microchem J 2018. [DOI: 10.1016/j.microc.2018.06.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Bagheri H, Golzari Aqda T, Enteshari Najafabadi M. Evaluation of prepared natural polymers in the extraction of chlorobenzenes from environmental samples: Sol–gel–based cellulose acetate-phenyltriethoxysilane fibers. Microchem J 2018. [DOI: 10.1016/j.microc.2018.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|