1
|
Dezhakam E, Tavakkol M, Kafili T, Nozohouri E, Naseri A, Khalilzadeh B, Rahbarghazi R. Electrochemical and optical (bio)sensors for analysis of antibiotic residuals. Food Chem 2024; 439:138145. [PMID: 38091787 DOI: 10.1016/j.foodchem.2023.138145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/31/2023] [Accepted: 12/03/2023] [Indexed: 01/10/2024]
Abstract
Antibiotic residuals in foods may lead to crucial health and safety issues in the human body. Rapid and in-time analysis of antibiotics using simple and sensitive techniques is in high demand. Among the most commonly applicable modalities, chromatography-based techniques like HPLC and LC-MS, along with immunological approaches, particularly ELISA have been exampled in the analysis of antibiotics. Despite being highly sensitive, these methods are considerably time-consuming, thus the presence of skilled personnel and costly equipment is essential. Nanomaterial-based (bio)sensors, however, are de novo analytical equipment with some beneficial characteristics, such as simplicity, low price, on-site, high accuracy, and sensitivity for the detection of analytes. This review aimed to collect the latest developments in NM-based sensors and biosensors for the observation of highly used antibiotics like Vancomycin (Van), Linezolid (Lin), and Clindamycin (Clin). The current challenges and developmental perspectives are also debated in detail for future research directions.
Collapse
Affiliation(s)
- Ehsan Dezhakam
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mohammad Tavakkol
- School of Chemistry, University College of Science, University of Tehran, Tehran, Iran
| | - Taha Kafili
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Ehsan Nozohouri
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA
| | - Abdolhosein Naseri
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Balal Khalilzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Nguyen TT, Kil YS, Sung JH, Youn YS, Jeong JH, Lee JH, Jiang HL, Yook S, Nam JW, Jeong JH. Fabrication of stem cell heterospheroids with sustained-release chitosan and poly(lactic-co-glycolic acid) microspheres to guide cell fate toward chondrogenic differentiation. Int J Biol Macromol 2024; 263:130356. [PMID: 38395283 DOI: 10.1016/j.ijbiomac.2024.130356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
Mesenchymal stem cell (MSC)-based therapies show great potential in treating various diseases. However, control of the fate of injected cells needs to be improved. In this work, we developed an efficient methodology for modulating chondrogenic differentiation of MSCs. We fabricated heterospheroids with two sustained-release depots, a quaternized chitosan microsphere (QCS-MP) and a poly (lactic-co-glycolic acid) microsphere (PLGA-MP). The results show that heterospheroids composed of 1 × 104 to 5 × 104 MSCs formed rapidly during incubation in methylcellulose medium and maintained high cell viability in long-term culture. The MPs were uniformly distributed in the heterospheroids, as shown by confocal laser scanning microscopy. Incorporation of transforming growth factor beta 3 into QCS-MPs and of dexamethasone into PLGA-MPs significantly promoted the expression of chondrogenic genes and high accumulation of glycosaminoglycan in heterospheroids. Changes in crucial metabolites in the dual drug depot-engineered heterospheroids were also evaluated using 1H NMR-based metabolomics analysis to verify their successful chondrogenic differentiation. Our heterospheroid fabrication platform could be used in tissue engineering to study the effects of various therapeutic agents on stem cell fate.
Collapse
Affiliation(s)
- Tiep Tien Nguyen
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, Gyeonggi 16419, Republic of Korea; College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea; Epibiotech Co. Ltd., Incheon 21983, Republic of Korea
| | - Yun-Seo Kil
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea; College of Pharmacy, Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae, Gyeongnam 50834, Republic of Korea
| | - Jong-Hyuk Sung
- Epibiotech Co. Ltd., Incheon 21983, Republic of Korea; College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Republic of Korea
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi 16419, Republic of Korea
| | - Ji Hoon Jeong
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi 16419, Republic of Korea
| | - Jung Heon Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi 16419, Republic of Korea
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Simmyung Yook
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi 16419, Republic of Korea; Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Joo-Won Nam
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Jee-Heon Jeong
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, Gyeonggi 16419, Republic of Korea.
| |
Collapse
|
3
|
Aboshabana R, Samir Elama H, Elmansi H, Abo El Abass S. Investigating fluorogenic labelling of amine coupled with first-order derivative spectrofluorimetry as a versatile analytical methodology: Application to estimation of benoxinate in its eye drops. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123410. [PMID: 37778176 DOI: 10.1016/j.saa.2023.123410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023]
Abstract
In this research, fluorogenic labelling followed by applying first-order derivative spectrofluorimetry for the developed fluorophore is discussed as an alternative, sensitive and selective analytical approach. Benoxinate, containing a primary amine and fluorescamine reagent were selected for the study. Then the proposed methodology relies on the reaction between the primary amine in benoxinate with fluorescamine that selectively reacts with primary amines to develop highly fluorescent products. The fluorescamine-benoxinate developed fluorophore is identified by its sharp first-order derivative peak at 465 nm following excitation at 386 nm in borate buffer, pH 8. The optimum reaction conditions were ascertained. Following ICH validation guidelines, the first order derivative of the relative fluorescence intensity for the developed fluorophore was linearly related to benoxinate concentration and ranged from 20.0 to 200.0 ng/mL with a detection limit of 3.36 ng/mL and a quantitation limit of 10.19 ng/mL, moreover, satisfying accuracy and precision values were obtained upon statistical analysis of results. The offered analytical method was successfully applied to quantify benoxinate in raw material and Benox® eye drops as a direct application to a commercial formulation.
Collapse
Affiliation(s)
- Rasha Aboshabana
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Heba Samir Elama
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Heba Elmansi
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Samah Abo El Abass
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 35712, Egypt
| |
Collapse
|
4
|
Salem H, Omar MA, Mazen DZ, Nour El-Deen DAM. Simultaneous Determination of Ceftazidime in Three Different Pharmaceutical Preparations Combined with Either Tazobactam, Tobramycin or Sulbactam by HPTLC-Spectrodensitometric Method. J Chromatogr Sci 2023; 62:35-43. [PMID: 37083048 DOI: 10.1093/chromsci/bmad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 12/30/2022] [Accepted: 03/16/2023] [Indexed: 04/22/2023]
Abstract
A new, simple hight performance thin layer chromatography (HPTLC)-Spectrodensitometric strategy was created and approved for the synchronous estimation of four antibacterial specialists: ceftazidime (CEF), tazobactam (TAZ), tobramycin (TOB) and sulbactam (SUL). The four compounds were separated on TLC aluminum plates covered with silica gel 60 F254, using chloroform-acetonitrile-methanol-ammonia (4:1:0.5:0.15, v/v/v/v) as a mobile phase at 254 nm. Linear correlation was obeyed over the concentration ranges of 12.0-72.0, 2.0-12.0, 3.0-18.0 and 10.0-50.0 μg mL-1 for CEF, TAZ, TOB and SUL, respectively. The proposed approach is efficient, repeatable and convenient as a flexible method for the quality control of diverse combinations of these pharmaceuticals in various pharmaceutical preparations, with high percent recoveries that are highly consistent with labeled data. When the findings of the proposed technique were compared to those of the comparison methods, there were no critical contrasts in terms of precision and accuracy.
Collapse
Affiliation(s)
- Hesham Salem
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Deraya University, New Minia 61511, Egypt
| | - Mahmoud A Omar
- Analytical Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Medinah 41477, Saudi Arabia
| | - Dina Z Mazen
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Deraya University, New Minia 61511, Egypt
| | - Deena A M Nour El-Deen
- Analytical Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| |
Collapse
|
5
|
Saraya RE, Salman BI, Hassan YF, Hassan AI, Refaat SA, Batakoushy HA. Applicability of fluorescamine as a fluorogenic reagent for highly sensitive fluorimetric analysis of the tyrosine kinase inhibitor (avapritinib) in pharmaceuticals and biological samples. LUMINESCENCE 2023; 38:1632-1638. [PMID: 37417422 DOI: 10.1002/bio.4550] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/08/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023]
Abstract
Avapritinib (AVP) was the first precision drug to be approved by the US Food and Drug Administration (FDA) in 2020 for patients suffering from metastatic gastrointestinal stromal tumors (GISTs) and progressive systemic mastocytosis. The analysis of AVP in pharmaceutical tablets and human plasma was then carried out using a fast, efficient, sensitive, and simple fluorimetric method using a fluorescamine reagent. The procedure is based on the interaction between fluorescamine as a fluorogenic reagent and the primary aliphatic amine moiety in AVP using borate buffer solution at pH 8.8. The produced fluorescence was measured at 465 nm (Excitation at 395 nm). The calibration graph's linearity range was discovered to be 45.00-500.0 ng mL-1 . Utilizing the International Council for Harmonization (ICH) and US-FDA recommendations, the research technique was validated and bioanalytically validated. The proposed approach was effectively employed for determining the stated pharmaceuticals in plasma with a high percentage of recovery ranging from 96.87 to 98.09 and pharmaceutical formulations with a percentage of recovery equal to 102.11% ± 1.05%. In addition, the study was extended to a pharmacokinetic study of AVP with 20 human volunteers as a step for AVP management in therapeutic cancer centers.
Collapse
Affiliation(s)
- Roshdy E Saraya
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Baher I Salman
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Yasser F Hassan
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Ahmed I Hassan
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Shymaa Abdelsattar Refaat
- Clinical Biochemistry and Molecular Diagnostics Department, National Liver Institute, Menoufia University, Shibin Elkom, Egypt
| | - Hany A Batakoushy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Menoufia University, Shebin Elkom, Egypt
| |
Collapse
|
6
|
Salman BI. Green microwave quantum dots as luminescent probes for quantifying prucalopride: consistency of content and application to pharmacokinetic studies. BMC Chem 2023; 17:83. [PMID: 37468925 DOI: 10.1186/s13065-023-01002-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/06/2023] [Indexed: 07/21/2023] Open
Abstract
Prucalopride (PCP) is a medication used for the management of constipation via regulating bowel motions. PCP is widely used all over the world. So, novel, rapid, and highly sensitive carbon dots N-CQDs were obtained from Eruca Sativa juice via microwave approach in 4 min. The luminescence power of N-CQDs was declined by the increasing prucalopride concentration at emission 518 nm with linearity ranged from 3.00 to 200.00 ng mL-1. The luminescent antecedent was utilized for the test of PCP in human plasma with the rate of recovery extending from 95.06 to 98.40%. The new technique is an eco-friendly analytical method that can be easily applied in clinical laboratories. This assay is also simple, sensitive, and applied to therapeutic laboratories and subsequent pharmacokinetic studies in several clinical laboratories. Furthermore, the N-CQDs nano-sensor was able to distinguish the target drug from interferents commonly found in human plasma, indicating its high specificity and selectivity for PCP detection.
Collapse
Affiliation(s)
- Baher I Salman
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| |
Collapse
|
7
|
Paimard G, Shamsipur M, Gholivand MB. A three-dimensional hybrid of CdS quantum dots/chitosan/reduced graphene oxide-based sensor for the amperometric detection of ceftazidime. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02494-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Mohamed AR. Utility of Silver-nanoparticles for Nano-fluorimetric Determination of Vancomycin Hydrochloride in Pharmaceutical Formulation and Biological Fluids: Greenness Assessment. J Fluoresc 2022; 32:1899-1912. [PMID: 35751750 PMCID: PMC9402737 DOI: 10.1007/s10895-022-02942-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/24/2022] [Indexed: 10/25/2022]
Abstract
Vancomycin hydrochloride (VANH) is a glycopeptide antibiotic commonly employed in the prophylaxis and therapy of various gram-positive bacterial life-threatening infections. Due to the narrow therapeutic window of VANH, its serum levels should be well-monitored to avoid its toxicity and to optimize its therapy. Herein, an innovative silver-nanoparticles enhanced fluorescence technique was designed for VANH rapid analysis in its pharmaceutical formulation and biological fluids. This technique is based on reinforcement of VANH fluorescence intensity with silver-nanoparticles that were synthesized by a redox reaction between VANH and silver nitrate in NaOH alkaline medium using polyvinylpyrrolidone as a stabilizer. The produced silver-nanoparticles were characterized by using UV-visible spectroscopy where they have an intense absorption maximum at 415 nm and transmission electron microscope (TEM) micrograph where they are spherical in shape with smooth surface morphology and size of 10.74 ± 2.44 nm. The fluorescence intensity was measured at 394 nm after excitation at 259 nm. Under optimum conditions, a good linear relationship was accomplished between the VANH concentration and the fluorescence intensity in a range of (1-36) ng/mL with a limit of detection of 0.29 ng/mL. Greenness assessment was performed using two assessment tools namely; eco-scale scoring and green analytical procedure index revealing excellent greenness of the proposed technique. The proposed technique was validated according to the International Conference on Harmonisation (ICH) recommendations and statistically compared with the reported HPLC method revealing no significant difference concerning accuracy and precision at p = 0.05. The proposed technique depended primarily on water as a cheap and eco-friendly solvent.
Collapse
Affiliation(s)
- Ahmed R. Mohamed
- grid.442695.80000 0004 6073 9704Analytical Chemistry Department, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, 11829 Egypt
| |
Collapse
|
9
|
Iranifam M, Toolooe Gardeh Rasht M, Al Lawati HAJ. CuS nanoparticles-enhanced luminol-O 2 chemiluminescence reaction used for determination of paracetamol and vancomycin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 261:120038. [PMID: 34118521 DOI: 10.1016/j.saa.2021.120038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
A new chemiluminescence (CL) method was proposed to measure two widely used drugs, including paracetamol (PCM) and vancomycin (VAN). The CL reaction used was the CuS nanoparticles (CuS NPs)-luminol-O2 system. In this system, CuS NPs played the role of catalyst and increased the CL intensity. CuS NPs were easily synthesized by quick-precipitation. CuS NPs were characterized by spectroscopic techniques, and the mean size of NPs was estimated to be about 9 nm. In the developed CL methods, PCM and VAN decreased the CL intensity. In the proposed method, the linear concentration ranges were 4.0 × 10-5-4.0 × 10-4 mol L-1 of PCM and 2.0 × 10-5-6.0 × 10-4 mol L-1 of VAN. The limit of detections were 2.9 × 10-5 mol L-1 and 8.9 × 10-6 mol L-1 for PCM and VAN, respectively. The relative standard deviations (RSD) of the CL method were 2.99 and 4.31 (n = 6) for the determination of 3.0 × 10-4 mol L-1 PCM and VAN, respectively. It was also shown that the CL methods can measure PCM and VAN concentrations in various real samples.
Collapse
Affiliation(s)
- Mortaza Iranifam
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran.
| | | | - Haider A J Al Lawati
- Department of Chemistry, College of Science, Sultan Qaboos University, Box 36, Al-Khod, 123, Oman
| |
Collapse
|
10
|
Salem H, Omar MA, Mazen DZ, Nour El-Deen DAM. Utilization of a complex arrangement approach for spectroscopic examination with Eosin Y of various cephalosporins in their pure or pharmaceutical dosage forms, and in human plasma. LUMINESCENCE 2021; 36:1572-1583. [PMID: 33864352 DOI: 10.1002/bio.4057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/13/2021] [Accepted: 04/12/2021] [Indexed: 11/06/2022]
Abstract
Approved, basic, effective and successful spectroscopic strategies (spectrophotometric and spectrofluorimetric) were created to measure seven cephalosporins: cefpiramide (I), cefuroxime (II), cefoxitin (III), ceftazidime (IV), cefpirome (V), ceftobiprole (VI), and ceftriaxone (VII). These strategies used a two-fold complex arrangement response for the drug amino groups with Eosin Y (EY). The examined drugs were determined spectrophotometrically at 542-550 nm in acetic acid derivative buffer. The examined drugs were determined spectrofluorimetrically by measuring their quenching effect on EY local fluorescence at 545 nm after excitation at 305 nm. The absorbance-intensity plots were rectilinear over the ranges 20-100, 10-130, 20-220, 30-230, 10-210, 20-180 and 10-130 μg ml-1 for I, II, III, IV, V, VI, and VII samples, respectively. The fluorescence-intensity plots were rectilinear over the ranges 0.5-1.5, 0.1-0.9, 0.3-1.5, 0.5-2.5, 0.1-0.9, 0.5-2.5 and 0.1-1.0 μg ml-1 for I, II, III, IV, V, VI, and VII samples, respectively. The recommended materials were certified as adhering to International Council for Harmonisation (ICH) guidelines and were used to examine the tested drugs in different dosage forms and in human plasma tests. The approved materials matched the reference materials.
Collapse
Affiliation(s)
- Hesham Salem
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Deraya University, New Minia, Egypt
| | - Mahmoud A Omar
- Analytical Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt.,Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Medinah, Saudi Arabia
| | - Dina Z Mazen
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Deraya University, New Minia, Egypt
| | | |
Collapse
|
11
|
Kim YJ, Ha JH, Kim YJ. Self-assembled polymeric micelles for targeted photodynamic therapy of human epidermal growth factor receptor 2 overexpressing breast cancer. NANOTECHNOLOGY 2021; 32:275101. [PMID: 33780921 DOI: 10.1088/1361-6528/abf2fe] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Photodynamic therapy (PDT) has been extensively explored as a promising alternative therapeutic approach for many malignant tumors. However, the PDT system generally involves unsatisfactory tumor specificity and nonspecific accumulation of photosensitizers around the target cancer cells, leading to phototoxic damage to adjacent healthy normal cells. In this study, we developed pheophorbide a (Pheo a)/human epidermal growth factor receptor 2 (HER2) targeting peptide (epitope form, HLTV, PEG2-LTVSPWY)-co-conjugated methoxy poly(ethylene glycol)-block-poly(L-lysine hydrochloride) (PEG-PLL)/hyaluronic acid (HA) (P3H2) polymeric micelles via a self-assembly method for HER2-targeted PDT treatment for breast cancer, thereby enhancing the PDT efficacy. The synthesized P3H2 polymeric micelles were spherical, with an average diameter of 125.7 ± 21.2 nm in an aqueous solution. The results ofin vitrocytotoxicity assays demonstrated that the P3H2 polymeric micelles significantly improved PDT efficacy on the SK-BR-3 cells due to the enhanced targeting ability. In addition, PDT treatment using the P3H2 polymeric micelles effectively killed breast cancer cells by inducing higher intracellular reactive oxygen species generation and apoptotic cell death. In particular, the three-dimensional cell culture model proved the synergistic PDT efficacy using P3H2 polymeric micelles on the SK-BR-3 cells. Based on these results, the PDT treatment using P3H2 polymeric micelles can serve as a highly effective therapeutic modality for breast cancer.
Collapse
Affiliation(s)
- Young-Jin Kim
- Department of Biomedical Engineering, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Ji-Hui Ha
- Department of Biomedical Engineering, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Ye-Ji Kim
- Department of Biomedical Engineering, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| |
Collapse
|
12
|
Amiri A, Faridbod F, Zoughi S. An optical nanosensor fabricated by carbon dots embedded in silica molecularly imprinted polymer for sensitive detection of ceftazidime antibiotic. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.113111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
13
|
Lee JH, Uyama H, Kwon OK, Kim YJ. Nitric oxide and reactive oxygen species-releasing polylactic acid monolith for enhanced photothermal therapy of osteosarcoma. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.11.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
Ha JH, Kim YJ. Photodynamic and Cold Atmospheric Plasma Combination Therapy Using Polymeric Nanoparticles for the Synergistic Treatment of Cervical Cancer. Int J Mol Sci 2021; 22:ijms22031172. [PMID: 33504007 PMCID: PMC7865232 DOI: 10.3390/ijms22031172] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/11/2021] [Accepted: 01/21/2021] [Indexed: 12/13/2022] Open
Abstract
Integrating multi-modal therapies into one platform could show great promise in overcoming the drawbacks of conventional single-modal therapy and achieving improved therapeutic efficacy in cancer. In this study, we prepared pheophorbide a (Pheo a)/targeting ligand (epitope analog of oncoprotein E7, EAE7)-conjugated poly(γ-glutamic acid) (γ-PGA)/poly(lactide-co-glycolide)-block-poly(ethylene glycol) methyl ether (MPEG-PLGA)/hyaluronic acid (PPHE) polymeric nanoparticles via self-assembly and encapsulation method for the photodynamic therapy (PDT)/cold atmospheric plasma (CAP) combinatory treatment of human papillomavirus (HPV)-positive cervical cancer, thereby enhancing the therapeutic efficacy. The synthesized PPHE polymeric nanoparticles exhibited a quasi-spherical shape with an average diameter of 80.5 ± 17.6 nm in an aqueous solution. The results from the in vitro PDT efficacy assays demonstrated that PPHE has a superior PDT activity on CaSki cells due to the enhanced targeting ability. In addition, the PDT/CAP combinatory treatment more effectively inhibited the growth of cervical cancer cells by causing elevated intracellular reactive oxygen species generation and apoptotic cell death. Moreover, the three-dimensional cell culture model clearly confirmed the synergistic therapeutic efficacy of the PDT and the CAP combination therapy using PPHE on CaSki cells. Overall, these results indicate that the PDT/CAP combinatory treatment using PPHE is a highly effective new therapeutic modality for cervical cancer.
Collapse
|
15
|
A nanocomposite probe of graphene quantum dots and magnetite nanoparticles embedded in a selective polymer for the enrichment and detection of ceftazidime. Talanta 2020; 218:121168. [DOI: 10.1016/j.talanta.2020.121168] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 12/18/2022]
|
16
|
Abed RI, Hadi H. Determination of Vancomycin Hydrochloride in Pharmaceutical Forms and Urine Samples Using Modified Magnetic Iron Oxide Nanoparticles. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-04517-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Peptide 18-4/chlorin e6-conjugated polyhedral oligomeric silsesquioxane nanoparticles for targeted photodynamic therapy of breast cancer. Colloids Surf B Biointerfaces 2020; 189:110829. [PMID: 32036332 DOI: 10.1016/j.colsurfb.2020.110829] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/23/2020] [Accepted: 01/25/2020] [Indexed: 12/17/2022]
Abstract
Chlorin e6 (Ce6), with its high phototoxic potential, has wide applications in photodynamic therapy (PDT) for many human diseases. However, poor cancer cell localization of Ce6 has limited its direct application for PDT. Here, we developed cancer-targeting peptide p 18-4/chlorin e6 (Ce6)-conjugated polyhedral oligomeric silsesquioxane (PPC) nanoparticles for improving the targeting ability of Ce6 to breast cancer cells, thereby enhancing PDT efficacy. The synthesized PPC nanoparticles exhibited a spherical shape with an average diameter of 127.2 ± 11.3 nm in aqueous solution. Compared with free Ce6, the immobilization of p 18-4 enhanced the in vitro cellular uptake and targeting ability of PPC nanoparticles in breast cancer cell line MDA-MB-231. In addition, the intracellular uptake of PPC nanoparticles in MDA-MB-231 cells was dramatically increased compared with other cancer cells, indicating an obvious targeting ability of PPC nanoparticles on breast cancer cells. Upon light irradiation, PPC nanoparticles revealed significantly improved phototoxicity to MDA-MB-231 cells, mainly due to apoptotic cell death. In vivo PDT study suggested that PPC nanoparticles exhibited increased retention in tumor tissues and effectively inhibited the growth of MDA-MB-231 tumors in a target-specific manner. Overall, these results indicate that PPC nanoparticles are highly effective PDT agents for breast cancer therapy.
Collapse
|
18
|
Hussein SA, Salman BI, Ali MFB, Marzouq MA. Development of sensitive benzofurazan-based spectrometric methods for analysis of spectinomycin in vials and human biological samples. LUMINESCENCE 2019; 34:895-902. [PMID: 31379072 DOI: 10.1002/bio.3688] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/25/2019] [Accepted: 07/02/2019] [Indexed: 11/12/2022]
Abstract
Spectinomycin hydrochloride (SPEC) is an aminoglycoside antibiotic that has a broad spectrum against several bacterial strains of humans and veterinary infections. However, SPEC lacks a fluorophore or chromophore and this lack makes its analysis a challenge. Our study provides a simple, sensitive and low-cost spectrofluorimetric/spectrophotometric method based on the reaction between secondary amine groups and a benzofurazan reagent using borate buffer (pH 9.2). The yielding compound was measured fluorimetrically at 530 nm (excitation at 460 nm) with colorimetry at 410 nm. The calibration curves ranged from 30 to 400 ng ml-1 and from 0.2 to 6 μg ml-1 for spectrofluorimetric and spectrophotometric analyses, respectively. The limits of detection were calculated to be 4.15 ng ml-1 and 0.05 μg ml-1 for spectrofluorimetric and spectrophotometric processes, respectively. The ultra-affectability and high selectivity of the proposed method permitted analysis of SPEC in the dosage form and in human plasma samples, with good recoveries of about 101.19 and 97.11%, respectively, without any matrix interference. The proposed strategy was validated using International Conference on Harmonization standards and validated bioanalytically using USFDA recommendations.
Collapse
Affiliation(s)
- Samiha A Hussein
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Baher I Salman
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut branch, Assiut, Egypt
| | - Marwa F B Ali
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Mostafa A Marzouq
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut branch, Assiut, Egypt
| |
Collapse
|
19
|
Marzouq MA, Salman BI, Hussein SA, Ali MF. Hantzsch reaction approach for determination of teicoplanin and vancomycin in real human plasma: Application to pharmaceutical preparations and to synthetic mixture with rifampicin for drug-resistant strain of Staphylococcus aureus. Microchem J 2019. [DOI: 10.1016/j.microc.2019.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|