1
|
Li L, Li M, Qiu Y, Wang S, Dong Y. Aptamers capable of simultaneously identifying multiple targets and corresponding applications in medical diagnosis-A review. Int J Biol Macromol 2025; 311:143666. [PMID: 40316072 DOI: 10.1016/j.ijbiomac.2025.143666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/20/2025] [Accepted: 04/28/2025] [Indexed: 05/04/2025]
Abstract
Aptamers, a unique class of nucleic acid sequences recognized for their specific binding capabilities, have found widespread application in biomedical field. While traditional aptamers are typically designed to target a single molecule recognition, recent attention has been directed towards multifunctional aptamers capable of simultaneously identifying multiple targets. In this review, the latest advancements in multifunctional aptamers and their applications in medical diagnosis are presented for the first time. This review focuses on the following essential aspects, including methods employed for developing multifunctional aptamers, detailed characteristics of these aptamers, practical applications across diverse diagnostic scenarios, and in-depth discussions on critical aspects of their design and utility. To conclude, future perspectives are provided to drive further development and broader application of multifunctional aptamers in the biomedical domain.
Collapse
Affiliation(s)
- Ling Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Menglei Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yinghua Qiu
- Center for Molecular Diagnostics and Precision Medicine, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia 19102, USA
| | - Sai Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, PR China
| | - Yiyang Dong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
2
|
Du X, Zhang B, Lian Y, Jiang X, Li Y, Jiang D. A bulit-in self-calibration ratiometric self-powered photoelectrochemical sensor for high-precision and sensitive detection of microcystin-RR. Mikrochim Acta 2024; 191:379. [PMID: 38856817 DOI: 10.1007/s00604-024-06447-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/18/2024] [Indexed: 06/11/2024]
Abstract
A novel high-precision aptasensor of microcystin-RR (MC-RR) is developed based on a ratiometric self-powered photoelectrochemical platform. In detail, the defective MoS2/Ti3C2 nanocomposite with good photoelectric activity was designed to serve as the photoanode of the sensor for enhancing the signal and improving the detection sensitivity. In order to effectively eliminate external interferences, the key point of this ratiometric device is the introduction of the spatial-resolved technique, which includes the detection section and the reference section, generating reference signals and response signals, respectively. Moreover, output power was used as the detection signal, instead of the traditional photocurrent or photovoltage. Further, potassium persulfate was introduced as electron acceptor, which was beneficial for improving the electron transport efficiency, hindering electron-hole recombination, and significantly promoting the performance of the sensor. Finally, aptamer was adopted as recognition element to capture MC-RR molecules. The prepared sensor had a linear range from 10-12 to 10-6 M, and the detection limit was 5.6 × 10-13 M (S/N = 3). It has good precision, selectivity, and sensitivity, which shows great prospects in the on-site accurate analysis of samples with high energy output in the self-powered sensing field.
Collapse
Affiliation(s)
- Xiaojiao Du
- School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou, 213032, Jiangsu, P.R. China.
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, 212013, P.R. China.
| | - Bing Zhang
- School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou, 213032, Jiangsu, P.R. China
| | - Yuebin Lian
- School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou, 213032, Jiangsu, P.R. China
| | - Xiaoyan Jiang
- School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou, 213032, Jiangsu, P.R. China
| | - Yan Li
- School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou, 213032, Jiangsu, P.R. China
| | - Ding Jiang
- Jiangsu Key Laboratory of Materials Surface Science and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, Jiangsu, P.R. China.
| |
Collapse
|
3
|
Wang Q, Jiang D, Du X, Shan X, Wang W, Shiigi H, Chen Z. A zinc-air battery assisted self-powered electrochemical sensor for sensitive detection of microcystin-RR. Analyst 2024; 149:2291-2298. [PMID: 38511612 DOI: 10.1039/d4an00200h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Building a high-performance sensing platform is the key to developing sensitive sensors. Herein, a highly sensitive self-powered electrochemical sensor (SPES) was constructed using a WO3·H2O film as the cathode prepared by a hydrothermal method and Zn as the anode, and it could be applied to sensitive detection of microcystin (MC-RR). The WO3·H2O film with a larger specific surface area could boost the oxygen reduction reaction (ORR), which could achieve signal amplification and significantly increase the sensitivity of the sensors. Under the optimal conditions, there was a good linear relationship between the increased electrical power density and the logarithm of MC-RR concentration with a detection limit of 1.31 × 10-15 M (S/N = 3). This method had good anti-interference ability and stability when applied to the determination of MC-RR content in actual samples, which could boost the potential application of electrochemical sensors in the field of environmental monitoring.
Collapse
Affiliation(s)
- Qianjun Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, P. R. China.
| | - Ding Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, P. R. China.
| | - Xiaojiao Du
- Oakland International Associated Laboratory, School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou, Jiangsu, 213032, P. R. China
| | - Xueling Shan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, P. R. China.
| | - Wenchang Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, P. R. China.
- Analysis and Testing Center, NERC Biomass of Changzhou University, Jiangsu, 213032, PR China
| | - Hiroshi Shiigi
- Department of Applied Chemistry, Osaka Metropolitan University, 1-1 Gakuen, Naka, Sakai, Osaka 599-8531, Japan
| | - Zhidong Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, P. R. China.
| |
Collapse
|
4
|
Sun J, Zhu R, Du X, Zhang B, Zheng M, Ji X, Geng L. An ultrasensitive photo-driven self-powered aptasensor for microcystin-RR assay based on ZnIn 2S 4/Ti 3C 2 MXenes integrated with a matching capacitor for multiple signal amplification. Analyst 2023; 148:5060-5069. [PMID: 37668261 DOI: 10.1039/d3an00914a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
A photo-driven self-powered aptasensor was constructed based on a matching capacitor and the ZnIn2S4/Ti3C2 heterojunction as the photoanode and Cu2O as the photocathode in a dual-photoelectrode sensing matrix for multiple signal amplification for the ultrasensitive detection of microcystin-RR (MC-RR). The introduction of Ti3C2 MXene nanosheets on the photoanode surface can not only accelerate the transfer and separation of photoinduced electron/hole pairs, thus enhancing the output signal of the photo-driven self-powered system, but also provide a larger specific surface area for the immobilization of the bio-recognition unit aptamer. More importantly, for a portable and miniaturized device, a micro-workstation with the size of a universal serial bus (USB) disk and a novel short-circuit current access was proposed to capture the instantaneous output electrical signal for real-time data tracking. In such a way, a sensitivity of 2.7 mA pM-1 was achieved when the matching capacitor was integrated into the self-powered system, which was 22 times that without a capacitor. After the interaction between MC-RR and the corresponding aptamer, a 'signal-off' detection configuration was formed via the steric hindrance effect. Therefore, such a multiple signal amplification system realized the ultrasensitive and selective determination of MC-RR successfully. Under optimal conditions, the linear range of the self-powered aptasensor was 0.1 to 100 pM and the detection limit was 0.033 pM (S/N = 3). The aptasensor was applied to the detection of MC-RR in fish, exhibiting good reproducibility (≈3.88%), paving the way for detecting microcystins in real-life samples.
Collapse
Affiliation(s)
- Jun Sun
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Rongquan Zhu
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Xiaojiao Du
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
- School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou, Jiangsu, 213032, P. R. China
| | - Bing Zhang
- School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou, Jiangsu, 213032, P. R. China
| | - Min Zheng
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
- School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou, Jiangsu, 213032, P. R. China
| | - Xingyu Ji
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Long Geng
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| |
Collapse
|
5
|
Svalova TS, Malysheva NN, Zaidullina RA, Medvedeva MV, Mazur AV, Kozitsina AN. Novel electrochemical immunosensing platform based on magnetite-antibody conjugate as a direct signal label: design and application for Salmonella typhimurium antigen determination. ANAL LETT 2023. [DOI: 10.1080/00032719.2023.2180015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Tatiana S. Svalova
- Institute of Chemical Engineering, Ural Federal University, Yekaterinburg, Russian Federation
| | - Natalia N. Malysheva
- Institute of Chemical Engineering, Ural Federal University, Yekaterinburg, Russian Federation
| | - Regina A. Zaidullina
- Institute of Chemical Engineering, Ural Federal University, Yekaterinburg, Russian Federation
| | - Margarita V. Medvedeva
- Institute of Chemical Engineering, Ural Federal University, Yekaterinburg, Russian Federation
| | - Alena V. Mazur
- Institute of Chemical Engineering, Ural Federal University, Yekaterinburg, Russian Federation
| | - Alisa N. Kozitsina
- Institute of Chemical Engineering, Ural Federal University, Yekaterinburg, Russian Federation
| |
Collapse
|
6
|
Self-powered photoelectrochemical aptasensor for sensitive detection of Microcystin-RR by integrating TiO2/S-doped Ti3C2 MXene photoanode and MoS2/S-doped Ti3C2 MXene photocathode. Anal Chim Acta 2022; 1238:340645. [DOI: 10.1016/j.aca.2022.340645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
|
7
|
Lei Z, Lei P, Guo J, Wang Z. Recent advances in nanomaterials-based optical and electrochemical aptasensors for detection of cyanotoxins. Talanta 2022; 248:123607. [PMID: 35661001 DOI: 10.1016/j.talanta.2022.123607] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/08/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
The existence of cyanotoxins poses serious threats to human health, it is highly desirable to develop specific and sensitive methods for rapid detection of cyanotoxins in food and water. Due to the distinct advantages of aptamer including high specificity, good stability and easy preparation, various aptamer-based sensors (aptasensors) have been proposed to promote the detection of cyanotoxins. In this review, we summarize recent advance in optical and electrochemical aptasensors for cyanotoxins sensing by integrating with versatile nanomaterials or innovative sensing strategies, such as colorimetric aptasensors, fluorescent aptasensors, surface enhancement Raman spectroscopy-based aptasensors, voltammetric aptasensors, electrochemical impedance spectroscopy-based aptasensors and photoelectrochemical aptasensors. We highlight the accomplishments and advancements of aptasensors with improved performance. Furthermore, the current challenges and future prospects in cyanotoxins detection are discussed from our perspectives, which we hope to provide more ideas for future researchers.
Collapse
Affiliation(s)
- Zhen Lei
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Peng Lei
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510316, PR China
| | - Jingfang Guo
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China.
| |
Collapse
|
8
|
Bilibana MP, Citartan M, Fuku X, Jijana AN, Mathumba P, Iwuoha E. Aptamers functionalized hybrid nanomaterials for algal toxins detection and decontamination in aquatic system: Current progress, opportunities, and challenges. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113249. [PMID: 35104779 DOI: 10.1016/j.ecoenv.2022.113249] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Purification and detection of algal toxins is the most effective technique to ensure that people have clean and safe drinking water. To achieve these objectives, various state-of-the-art technologies were designed and fabricated to decontaminate and detect algal toxins in aquatic environments. Amongst these technologies, aptamer-functionalized hybrid nanomaterials conjugates have received significant consideration as a result of their several benefits over other methods, such as good controllable selectivity, low immunogenicity, and biocompatibility. Because of their excellent properties, aptamer-functionalized hybrid nanomaterials conjugates are one of several remarkable agents. Several isolated aptamer sequences for algal toxins are addressed in this review, as well as aptasensor and decontamination aptamer functionalized metal nanoparticle-derived hybrid nanocomposites applications. In addition, we present diverse aptamer-functionalized hybrid nanomaterial conjugates designs and their applications for sensing and decontamination.
Collapse
Affiliation(s)
- Mawethu Pascoe Bilibana
- Department of Chemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North-West University, Private Bag X2046, Mmabatho 2735, South Africa; Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North-West University, Private Bag X2046, Mmabatho 2735, South Africa.
| | - Marimuthu Citartan
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas 13200, Pulau Pinang, Malaysia
| | - Xolile Fuku
- Institute for Nanotechnology and Water Sustainability (iNanoWS), Florida Campus, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1710, South Africa
| | - Abongile Nwabisa Jijana
- National Innovation Centre, Advanced Material Division, Mintek, 200 Malibongwe Drive, Private Bag x 3015, Johannesburg, Gauteng, South Africa
| | - Penny Mathumba
- National Innovation Centre, Advanced Material Division, Mintek, 200 Malibongwe Drive, Private Bag x 3015, Johannesburg, Gauteng, South Africa
| | - Emmanuel Iwuoha
- SensorLab (University of Western Cape Sensor Laboratories), Chemical Sciences Building, University of the Western Cape, Bellville, 7535 Cape Town, South Africa
| |
Collapse
|
9
|
Chen YY, Ting IJ, Wang SC. Using office inkjet printer to develop paper-based electrowetting-on-dielectric micromixer based on capillary wave-induced droplet vibration mixing for the reproducibility improvement of chemiluminescence assays. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.07.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Yue F, Li F, Kong Q, Guo Y, Sun X. Recent advances in aptamer-based sensors for aminoglycoside antibiotics detection and their applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143129. [PMID: 33121792 DOI: 10.1016/j.scitotenv.2020.143129] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 05/25/2023]
Abstract
Aminoglycoside antibiotics (AAs) have been extensively applied in medical field and animal husbandry owing to desirable broad-spectrum antibacterial activity. Excessive AAs residues in the environment can be accumulated in human body through food chain and cause detrimental effect on human health. The establishment of highly specific, simple and sensitive detection methods for monitoring AAs residues is highly in demand. Aptasensor using aptamer as the biological recognition element is the efficient and promising sensing method for detection of AAs. In this review, we have made a summary of specific aptamers sequences against AAs. Subsequently, we provide a systematical and comprehensive overview of modern techniques in aptasensors for detection of AAs according to optical aptasensors as well as electrochemical aptasensors and further summarize their advantages and disadvantages to compare their applications. In addition, we present an overview of practical applications of aptasensors in sample detection of AAs. Moreover, the current challenges and future trends in this field are also included to reveal a promising perspective for developing novel aptasensors for AAs.
Collapse
Affiliation(s)
- Fengling Yue
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, China
| | - Falan Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, China
| | - Qianqian Kong
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, China.
| |
Collapse
|
11
|
Zhang L, Hou Y, Guo X, Liu W, Lv C, Peng X, Zhang Z. Paper-based Chemiluminescence Device with Co-Fe Nanocubes for Sensitive Detection of Caffeic Acid. ANAL SCI 2021; 37:293-299. [PMID: 32863334 DOI: 10.2116/analsci.20p229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this work, a new chemiluminescence (CL) system of Co-Fe prussian blue analogs nanocubes (Co-Fe PBA NCs) that can catalyze luminol to produce strong CL in the absence of H2O2 was established. Co-Fe PBA NCs have the property of oxidase-like activity, and it can catalyze the generation of active oxygen radicals in a dissolved oxygen system. Since caffeic acid (CA) can remove reactive oxygen species in the system, a sensitive detection method for CA on a paper-based chip was developed. Under the optimal conditions, this method showed a good linear response to CA in the range of 10 - 800 ng mL-1 with a limit of 3 ng mL-1. The proposed method had been used for the determination of CA in tea samples. The results may open a new avenue for the catalytic property on luminol CL system without extra oxidants.
Collapse
Affiliation(s)
- Liu Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University
| | - Yue Hou
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University
| | - Xiaoyan Guo
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University
| | - Wei Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University
| | - Congcong Lv
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University
| | - Xing Peng
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University
| | - Zixuan Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University
| |
Collapse
|
12
|
Luo X, Zhao X, Wallace GQ, Brunet MH, Wilkinson KJ, Wu P, Cai C, Bazuin CG, Masson JF. Multiplexed SERS Detection of Microcystins with Aptamer-Driven Core-Satellite Assemblies. ACS APPLIED MATERIALS & INTERFACES 2021; 13:6545-6556. [PMID: 33522805 DOI: 10.1021/acsami.0c21493] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We describe surface-enhanced Raman spectroscopy (SERS) aptasensors that can indirectly detect MC-LR and MC-RR, individually or simultaneously, in natural water and in algal culture. The sensor is constructed from nanoparticles composed of successive layers of Au core-SERS label-silver shell-gold shell (Au@label@Ag@Au NPs), functionalized on the outer Au surface by MC-LR and/or MC-RR aptamers. These NPs are immobilized on asymmetric Au nanoflowers (AuNFs) dispersed on planar silicon substrates through DNA hybridization of the aptamers and capture DNA sequences with which the AuNFs are functionalized, thereby forming core-satellite nanostructures on the substrates. This construction led to greater electromagnetic (EM) field enhancement of the Raman label-modified region, as supported by finite-difference time-domain (FDTD) simulations of the core-satellite assembly. In the presence of MC-LR and/or MC-RR, the aptamer-functionalized NPs dissociate from the AuNFs because of the stronger affinity of the aptamers with the MCs, which decreases the SERS signal, thus allowing indirect detection of the MCs. The improved SERS sensitivity significantly decreased the limit of detection (LOD) for separate MC-LR detection (0.8 pM) and for multiplex detection (1.5 pM for MC-LR and 1.3 pM for MC-RR), compared with other recently reported SERS-based methods for MC-LR detection. The aptasensors show excellent selectivity to MC-LR/MC-RR and excellent recoveries (96-105%). The use of these SERS aptasensors to monitor MC-LR production over 1 week in a culture medium of M. aeruginosa cells demonstrates the applicability of the sensors in a realistic environment.
Collapse
Affiliation(s)
- Xiaojun Luo
- Département de chimie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P. R. China
- Centre québécois des matériaux fonctionnels (CQMF), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
- Regroupement québécois des matériaux de pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
| | - Xingjuan Zhao
- Département de chimie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
- Centre québécois des matériaux fonctionnels (CQMF), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
- Regroupement québécois des matériaux de pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
| | - Gregory Q Wallace
- Département de chimie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
- Centre québécois des matériaux fonctionnels (CQMF), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
- Regroupement québécois des matériaux de pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
| | - Marie-Hélène Brunet
- Département de chimie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
- Regroupement québécois des matériaux de pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
| | - Kevin J Wilkinson
- Département de chimie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
- Regroupement québécois des matériaux de pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
| | - Ping Wu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P. R. China
| | - Chenxin Cai
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P. R. China
| | - C Geraldine Bazuin
- Département de chimie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
- Centre québécois des matériaux fonctionnels (CQMF), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
| | - Jean-Francois Masson
- Département de chimie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
- Centre québécois des matériaux fonctionnels (CQMF), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
- Regroupement québécois des matériaux de pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
| |
Collapse
|
13
|
Wang R, Yue N, Fan A. Nanomaterial-enhanced chemiluminescence reactions and their applications. Analyst 2020; 145:7488-7510. [PMID: 33030463 DOI: 10.1039/d0an01300e] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chemiluminescence (CL) analysis is a trace analytical method that possesses advantages including high sensitivity, wide linear range, easy operation, and simple instruments. With the development of nanotechnology, many nanomaterial (NM)-enhanced CL systems have been established in recent years and applied for the CL detection of metal ions, anions, small molecules, tumor markers, sequence-specific DNA, and RNA. This review summarizes the research progress of the nanomaterial-enhanced CL systems the past five years. These CL reactions include luminol, peroxyoxalate, lucigenin, ultraweak CL reactions, and so on. The CL mechanisms of the nanomaterial-enhanced CL systems are discussed in the first section. Nanomaterials take part in the CL reactions as the catalyst, CL emitter, energy acceptor, and reductant. Their applications are summarized in the second section. Finally, the challenges and opportunities are discussed.
Collapse
Affiliation(s)
- Ruyuan Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China.
| | | | | |
Collapse
|
14
|
Zhang Y, Cui G, Meng Y, Wang Y, Hun X. Chemiluminescence assay for Listeria monocytogenes based on Cu/Co/Ni ternary nanocatalyst coupled with penicillin as generic capturing agent. LUMINESCENCE 2020; 36:11-19. [PMID: 32602594 DOI: 10.1002/bio.3908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/16/2020] [Accepted: 06/26/2020] [Indexed: 11/08/2022]
Abstract
Bacterial pathogen control is important in seafood production. In this study, a Cu/Co/Ni ternary nanoalloy (Cu/Co/Ni TNA) was synthesized using the oleylamine reducing method. It was found that Cu/Co/Ni TNA greatly enhanced the chemiluminescence (CL) signal of the hydroxylamine-O-sulfonic acid (HOSA)-luminol system. The CL properties of Cu/Co/Ni TNA were investigated systemically. The possible CL mechanism also was intensively investigated. Based on the enhanced CL phenomenon of Cu/Co/Ni TNA, a Cu/Co/Ni TNA, penicillin, and anti-L. monocytogenes (Listeria monocytogenes) antibody-based sandwich complex assay for detection of L. monocytogenes was established. In this sandwich CL assay, penicillin was employed to capture and enrich pathogenic bacteria with penicillin-binding proteins (PBPs) while anti-L. monocytogenes antibody was adopted as the specific recognition molecule to recognize L. monocytogenes. L. monocytogenes was detected sensitively based on this new Cu/Co/Ni TNA-HOSA-luminol CL system. The CL intensity was proportional to the L. monocytogenes concentration ranging from 2.0 × 102 CFU ml-1 to 3.0 × 107 CFU ml-1 and the limit of detection wa 70 CFU ml-1 . The reliability and potential applications of our method was verified by comparison with official methods and recovery tests in environment and food samples.
Collapse
Affiliation(s)
- Yue Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Marine Science and Biological Engineering; Institute of Life Sciences and Biomass Resources; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Gaoxi Cui
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Marine Science and Biological Engineering; Institute of Life Sciences and Biomass Resources; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Yuchan Meng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Marine Science and Biological Engineering; Institute of Life Sciences and Biomass Resources; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Yujing Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Marine Science and Biological Engineering; Institute of Life Sciences and Biomass Resources; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xu Hun
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Marine Science and Biological Engineering; Institute of Life Sciences and Biomass Resources; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, China
| |
Collapse
|
15
|
Gu L, Zou Y, Li Y, Zeng K, Zhu N, Zhu F, Gyimah E, Yakubu S, Meng H, Zhang Z. High-throughput chemiluminescence immunoassay based on Co 2+/hemin synergistic catalysis for sensitive detection tetrabromobisphenol A bis(2-hydroxyethyl) ether in the environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136880. [PMID: 32018994 DOI: 10.1016/j.scitotenv.2020.136880] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Here, a novel chemiluminescence (CL) immunoassay was fabricated for sensitive determination of tetrabromobisphenol A bis(2-hydroxyethyl) ether (TBBPA-DHEE), one of typical tetrabromobisphenol A derivatives. At the indirectly competitive method, the synthesized PS@hemin@Co2+ was labelled by secondary antibody (Ab2) instead of common natural enzymes, which showed excellent catalysis towards the decomposition of luminol-H2O2 for producing CL signal. Furthermore, the CL signal was greatly amplified owing to the synergistic catalysis of hemin and Co2+ in the detection system. Under the optimized conditions, the established method offered (i) low detection limit (LOD, 0.9 μg/L), which was almost 5 times lower than that using a conventional ELISA with the same antibody; (ii) a good linearity (1.6-14.3 μg/L); (iii) satisfactory accuracy and precision (recoveries, 89.67-125.33%; CV, 2.75-8.37%). The proposed CL immunoassay was applied for analysis of environmental samples from various sources collected from Jiangsu and Zhejiang province, China. And the detected concentrations were ranged in 2.4-3.7 μg/L in environmental waters and 1.8-2.4 ng/g (dry weight, dw) in soil samples, indicating great potential for trace TBBPA-DHEE detection from environmental samples.
Collapse
Affiliation(s)
- Lantian Gu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yanmin Zou
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Yanshen Li
- College of life Science, Yantai University, Yantai 264000, China
| | - Kun Zeng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Nuanfei Zhu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fang Zhu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Eric Gyimah
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Salome Yakubu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hui Meng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhen Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
16
|
Mei S, Liu B, Xiong X, Hun X. One-step fabrication of trimetallic alloy nanozyme catalyzer for luminol-H 2O 2 chemiluminescence and its application for miRNA-21 detection coupled with miRNA walking machine. J Pharm Biomed Anal 2020; 186:113280. [PMID: 32283480 DOI: 10.1016/j.jpba.2020.113280] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/21/2020] [Accepted: 03/22/2020] [Indexed: 12/17/2022]
Abstract
PtCuCo trimetallic alloys (PtCuCo-TAs) are synthesized by one-step reduction. The chemiluminescence (CL) properties of PtCuCo-TAs are studied systemically. PtCuCo-TAs show good catalyzing for luminol-H2O2 system. A CL platform is developed for the detection of miRNA-21 using PtCuCo-TAs as nanozyme catalyzer. In the CL detection platform, H1 (Hairpin DNA1) is immobilized onto magnetic beads (MBs) firstly. In the presence of miRNA-21, H1 is opened. H2 (Hairpin DNA2) then hybridizes with H1. Meanwhile, a "cleat" in the end of miRNA-21 with a fewer bases complementary is formed to prevent miRNA-21 dissociating from H1. This miRNA-21 hybridizes to another H1. When cpDNA-PtCuCo-TAs which consisted with cDNA (Complementary strand of probe DNA) and pDNA-PtCuCo-TAs (PtCuCo-TAs labeled with probe DNA) are added, the ssDNA region of H1 reacts with the toehold domain of probe DNA and cDNA is released resulting pDNA-PtCuCo-TAs being captured. With this process repeatedly, a lot of pDNA-PtCuCo-TAs are captured onto MBs. After separation and washing, the precipitate and H2O2 are put into the 96-well and luminol solution is injected. The CL signal is produced by PtCuCo-TAs catalyzing luminol-H2O2 system. The amount of miRNA-21 is detected with CL signal. This CL platform performs with limit of detection 0.167 fM and has good selectivity over other RNA.
Collapse
Affiliation(s)
- Shuyu Mei
- Department of Pathology, Tianjin Bao Di Hospital, Bao Di Clinical College of Tianjin Medical University, Tianjin, 301800, China
| | - Bingru Liu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, State Key Laboratory Base of Eco-chemical Engineering, Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Provincial Key Laboratory of Rubber Plastics, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xiaoli Xiong
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, State Key Laboratory Base of Eco-chemical Engineering, Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Provincial Key Laboratory of Rubber Plastics, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xu Hun
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, State Key Laboratory Base of Eco-chemical Engineering, Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Provincial Key Laboratory of Rubber Plastics, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|