1
|
Janmanee R, Sriwichai S. Development of an Electrochemical Biosensor Based on Polypyrrole-3-carboxylic Acid/Polypyrrole/Au Nanoparticle Composites for Detection of Dopamine. Polymers (Basel) 2025; 17:754. [PMID: 40292600 PMCID: PMC11944982 DOI: 10.3390/polym17060754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/04/2025] [Accepted: 03/11/2025] [Indexed: 04/30/2025] Open
Abstract
Dopamine (DA) is a neurotransmitter that works in the brain. It plays several important roles in executive functions, including motor control, memory, mood, motivation, and reward. DA imbalances are associated with diseases in the nervous system such as Parkinson's disease, schizophrenia, Alzheimer's disease, and attention deficit hyperactivity disorder (ADHD). Therefore, the development of a biosensor for the detection of precise amounts of DA is of great interest. In this research, polypyrrole-3-carboxylic acid/polypyrrole/gold nanoparticle (PP3C/PPy/AuNPs) composites were developed for the electrochemical detection of DA. Firstly, a PP3C/PPy/AuNPs composite thin film was synthesized by electropolymerization on a fluorine-doped tin oxide (FTO)-coated glass substrate. Subsequently, cyclic voltammetry (CV), scanning electron microscopy (SEM), and differential pulse voltammetry (DPV) were used for the characterization and study of the efficiency of the obtained conducting polymer-gold nanoparticle composite thin film for the detection of DA. The proposed electrochemical sensor showed good sensitivity and selectivity for the detection of DA with a wide detection linear range from 5 to 180 μM (R2 = 0.9913). The limit of detection (LOD) and limit of quantitation (LOQ) values were 9.72 nM and 0.032 μM, respectively. Therefore, it can be concluded that the electrochemically fabricated PP3C/PPy/AuNPs composite thin film can be applied as an electrochemical biosensor for the detection of dopamine for the early diagnosis of various neurological disorders in the future.
Collapse
Affiliation(s)
- Rapiphun Janmanee
- Chemistry Program, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok 65000, Thailand
| | - Saengrawee Sriwichai
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
2
|
Emran MY, Kotb A, Ganganboina AB, Okamoto A, Abolibda TZ, Alzahrani HAH, Gomha SM, Ma C, Zhou M, Shenashen MA. Tailored portable electrochemical sensor for dopamine detection in human fluids using heteroatom-doped three-dimensional g-C 3N 4 hornet nest structure. Anal Chim Acta 2024; 1320:342985. [PMID: 39142767 DOI: 10.1016/j.aca.2024.342985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND There is widespread interest in the design of portable electrochemical sensors for the selective monitoring of biomolecules. Dopamine (DA) is one of the neurotransmitter molecules that play a key role in the monitoring of some neuronal disorders such as Alzheimer's and Parkinson's diseases. Facile synthesis of the highly active surface interface to design a portable electrochemical sensor for the sensitive and selective monitoring of biomolecules (i.e., DA) in its resources such as human fluids is highly required. RESULTS The designed sensor is based on a three-dimensional phosphorous and sulfur resembling a g-C3N4 hornet's nest (3D-PS-doped CNHN). The morphological structure of 3D-PS-doped CNHN features multi-open gates and numerous vacant voids, presenting a novel design reminiscent of a hornet's nest. The outer surface exhibits a heterogeneous structure with a wave orientation and rough surface texture. Each gate structure takes on a hexagonal shape with a wall size of approximately 100 nm. These structural characteristics, including high surface area and hierarchical design, facilitate the diffusion of electrolytes and enhance the binding and high loading of DA molecules on both inner and outer surfaces. The multifunctional nature of g-C3N4, incorporating phosphorous and sulfur atoms, contributes to a versatile surface that improves DA binding. Additionally, the phosphate and sulfate groups' functionalities enhance sensing properties, thereby outlining selectivity. The resulting portable 3D-PS-doped CNHN sensor demonstrates high sensitivity with a low limit of detection (7.8 nM) and a broad linear range spanning from 10 to 500 nM. SIGNIFICANCE The portable DA sensor based on the 3D-PS-doped CNHN/SPCE exhibits excellent recovery of DA molecules in human fluids, such as human serum and urine samples, demonstrating high stability and good reproducibility. The designed portable DA sensor could find utility in the detection of DA in clinical samples, showcasing its potential for practical applications in medical settings.
Collapse
Affiliation(s)
- Mohammed Y Emran
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, 305-0044, Ibaraki, Japan.
| | - Ahmed Kotb
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Akhilesh Babu Ganganboina
- International Center for Young Scientists ICYS-NAMIKI, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Akihiro Okamoto
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, 305-0044, Ibaraki, Japan
| | - Tariq Z Abolibda
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
| | - Hassan A H Alzahrani
- Department of Chemistry, College of Science and Arts at Khulis, University of Jeddah, P.O. Box 355, Jeddah, Saudi Arabia
| | - Sobhi M Gomha
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
| | - Chongbo Ma
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province, 130024, China
| | - Ming Zhou
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province, 130024, China
| | - Mohamed A Shenashen
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia.
| |
Collapse
|
3
|
Kaewda C, Sriwichai S. Label-Free Electrochemical Dopamine Biosensor Based on Electrospun Nanofibers of Polyaniline/Carbon Nanotube Composites. BIOSENSORS 2024; 14:349. [PMID: 39056625 PMCID: PMC11275224 DOI: 10.3390/bios14070349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
The development of conducting polymer incorporated with carbon materials-based electrochemical biosensors has been intensively studied due to their excellent electrical, optical, thermal, physical and chemical properties. In this work, a label-free electrochemical dopamine (DA) biosensor based on polyaniline (PANI) and its aminated derivative, i.e., poly(3-aminobenzylamine) (PABA), composited with functionalized multi-walled carbon nanotubes (f-CNTs), was developed to utilize a conducting polymer as a transducing material. The electrospun nanofibers of the composites were fabricated on the surface of fluorine-doped tin oxide (FTO)-coated glass substrate under the optimized condition. The PANI/f-CNTs and PABA/f-CNTs electrospun nanofibers were characterized by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which confirmed the existence of f-CNTs in the composites. The electroactivity of the electrospun nanofibers was investigated in phosphate buffer saline solution using cyclic voltammetry (CV) before being employed for label-free electrochemical detection of DA using differential pulse voltammetry (DPV). The sensing performances including sensitivity, selectivity, stability, repeatability and reproducibility of the fabricated electrospun nanofiber films were also electrochemically evaluated. The electrochemical DA biosensor based on PANI/f-CNTs and PABA/f-CNTs electrospun nanofibers exhibited a sensitivity of 6.88 µA·cm-2·µM-1 and 7.27 µA·cm-2·µM-1 in the linear range of 50-500 nM (R2 = 0.98) with a limit of detection (LOD) of 0.0974 µM and 0.1554 µM, respectively. The obtained DA biosensor showed great stability, repeatability and reproducibility with precious selectivity under the common interferences, i.e., glucose, ascorbic acid and uric acid. Moreover, the developed electrochemical DA biosensor also showed the good reliability under detection of DA in artificial urine.
Collapse
Affiliation(s)
| | - Saengrawee Sriwichai
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
4
|
Appiah-Ntiamoah R, Guye ME, Dabaro MD, Kim H. 1-D Carbon Nano-Coils Derived from Almond Skin: Exhibiting Density of State, Diffusivity, Electron Transfer Rate, and Dopamine Redox Modulation Properties Akin to Graphene Oxide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310406. [PMID: 38312086 DOI: 10.1002/smll.202310406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/22/2024] [Indexed: 02/06/2024]
Abstract
The quest to develop graphene-like biomass-carbon for advanced biomolecule redox modulation and sensing remains a challenge. The primary obstacle is the limited ability of biomass to undergo extensive graphitization during pyrolysis resulting in the formation of amorphous carbon materials with a small carbon-double-bond-carbon domain size (Lsp2), density of state (LDOS), ion diffusivity (D), and electron transfer rate constant (Ks). Herein, using almond skin (AS) the morphology of biomass is demonstrated as the key to overcoming these limitations. AS consists of 1D syringyl/guaiacyl lignin nano-coils which under H2/H2 annealing transform into pyrolytic 1D carbon nano-coils (r-gC). Spectroscopy and microscopy analyses reveal that the sheet layering structure, crystallinity, LDOS, and Lsp2 of r-gC mimic those of graphene oxide (GO). Moreover, its unique 1D morphology and profound microstructure facilitate faster charge transfer and ion diffusion than GO's planar structure, leading to better redox modulation and sensing of the neurotransmitter dopamine (DA) in physiological fluids. r-gC's DA detection limit of 3.62 nM is below the lower threshold found in humans and on par with the state-of-the-art. r-gC is also DA-selective over 14 biochemicals. This study reveals that biomasses with well-defined and compact lignin structures are best suited for developing highly electroactive graphene-like biomass carbon.
Collapse
Affiliation(s)
- Richard Appiah-Ntiamoah
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Meseret Ethiopia Guye
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Mintesinot Dessalegn Dabaro
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Hern Kim
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| |
Collapse
|
5
|
Anjum S, Lou B, Tahir A, Aziz‐ur‐Rehman, Rehan H. Shah Gilani M, Xu G. Electrochemical Detection of Dopamine using a Phenyl Carboxylic Acid-Functionalized Electrode Made by Electrochemical Reduction of a Diazonium Salt. ChemistryOpen 2022; 11:e202200233. [PMID: 36478448 PMCID: PMC9728485 DOI: 10.1002/open.202200233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
A glassy carbon electrode (GCE) has been modified by an in situ electrochemical reduction of an aryldiazonium salt generated from the reaction of 4-aminobenzoic acid and sodium nitrite in acidic ethanolic solution. The as-prepared phenyl carboxylic acid-modified glassy carbon electrode has been, for the first time, used for the electrochemical determination of dopamine. Under optimal experimental parameters, outstanding electrocatalytic activity, high sensitivity at a LOD of 5.6×10-9 m, and broad linearity of 0.1 to 1000 μm were obtained. The crafted electrochemical platform demonstrated excellent stability, specificity, and anti-interference capability towards the sensing of dopamine.
Collapse
Affiliation(s)
- Saima Anjum
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P.R. China
- Chinese Academy of SciencesUniversity of Chinese Academy of SciencesNo. 19A YuquanluBeijing100049P.R. China
- Department of ChemistryGovt. Sadiq College Women UniversityBahawalpurPakistan
| | - Baohua Lou
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P.R. China
| | - Amiza Tahir
- Department of ChemistryGovt. Sadiq College Women UniversityBahawalpurPakistan
| | - Aziz‐ur‐Rehman
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P.R. China
- Chinese Academy of SciencesUniversity of Chinese Academy of SciencesNo. 19A YuquanluBeijing100049P.R. China
- Department of ChemistryBaghdad-ul-Jadeed CampusThe Islamia University of BahawalpurBahawalpurPakistan
| | | | - Guobao Xu
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P.R. China
- University of Science and Technology of ChinaAnhui230026P.R. China
| |
Collapse
|
6
|
Wang F, Zhao D, Li W, Zhang H, Li B, Hu T, Fan L. Rod-shaped Units Based Cobalt(II) Organic Framework as An Efficient Electrochemical Sensor for Uric Acid Detection in Serum. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Kulapina EG, Kulapina OI, Cherdakova EN, Ankina VD. Potentiometric Sensors Sensitive to Some Cephalosporin Antibiotics: Properties and Applications. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822080056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Charlton van der Horst, Vernon Somerset. Nanoparticles Application in the Determination of Uric Acid, Ascorbic Acid, and Dopamine. RUSS J ELECTROCHEM+ 2022. [DOI: 10.1134/s102319352205010x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Kulapina EG, Makarova NM. Potentiometric Sensors Based on Various Active Components for the Multisensor Determination of Anionic and Nonionic Surfactants. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822020071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Emran MY, Shenashen MA, Eid AI, Selim MM, El-Safty SA. Portable sensitive and selective biosensing assay of dopamine in live cells using dual phosphorus and nitrogen doped carbon urchin-like structure. CHEMICAL ENGINEERING JOURNAL 2022; 430:132818. [DOI: 10.1016/j.cej.2021.132818] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
11
|
Direksilp C, Scheiger JM, Ariyasajjamongkol N, Sirivat A. A highly selective and sensitive electrochemical sensor for dopamine based on a functionalized multi-walled carbon nanotube and poly( N-methylaniline) composite. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:469-479. [PMID: 35029250 DOI: 10.1039/d1ay01943k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dopamine (DA) is an important neurotransmitter used for diagnosing various diseases from its abnormal concentrations in human fluids. Herein, an electrochemical sensor based on a composite of re-doped poly(N-methylaniline) (rePNMA) and modified multi-walled carbon nanotubes (fMWCNTs), termed fMWCNT-rePNMA, was developed to measure DA concentration. The successful modification of the fMWCNT surface was confirmed by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Cyclic voltammetry (CV) displayed an excellent electrocatalytic activity of the fMWCNTs-rePNMA composite towards the oxidation of DA. The developed fMWCNTs-rePNMA composite demonstrated a broad linear range from 5 to 90 μmol L-1 with a low limit of detection (LOD) value of 2.23 μmol L-1, and a fast response with a high sensitivity of 251.5 nA μmol-1 L as determined from the calibration curve of the DA determination. In addition, the fMWCNTs-rePNMA composite selectively identified and quantified DA in the presence of ascorbic acid (AA) and uric acid (UA). Therefore, the fMWCNTs-rePNMA composite sensor shows potential to determine the level of DA in human urine.
Collapse
Affiliation(s)
- Chatrawee Direksilp
- The Conductive and Electroactive Polymer Research Unit, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand.
- Center of Excellence on Petrochemical and Materials Technology (PETROMAT), Chulalongkorn University Research Building, Soi Chula 12, Phayathai Road, Bangkok 10330, Thailand
| | - Johannes M Scheiger
- Institute of Technical Chemistry and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse 20, Karlsruhe 76131, Germany
| | - Nuttha Ariyasajjamongkol
- The Conductive and Electroactive Polymer Research Unit, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Anuvat Sirivat
- The Conductive and Electroactive Polymer Research Unit, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand.
- Center of Excellence on Petrochemical and Materials Technology (PETROMAT), Chulalongkorn University Research Building, Soi Chula 12, Phayathai Road, Bangkok 10330, Thailand
| |
Collapse
|
12
|
Sensitive glucose biosensor based on cyclodextrin modified carbon nanotubes for detecting glucose in honey. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Islam S, Shaheen Shah S, Naher S, Ali Ehsan M, Aziz MA, Ahammad AJS. Graphene and Carbon Nanotube-based Electrochemical Sensing Platforms for Dopamine. Chem Asian J 2021; 16:3516-3543. [PMID: 34487610 DOI: 10.1002/asia.202100898] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/05/2021] [Indexed: 12/24/2022]
Abstract
Dopamine (DA) is an important neurotransmitter, which is created and released from the central nervous system. It plays a crucial role in human activities, like cognition, emotions, and response to anything. Maladjustment of DA in human blood serum results in different neural diseases, like Parkinson's and Schizophrenia. Consequently, researchers have started working on DA detection in blood serum, which is undoubtedly a hot research area. Electrochemical sensing techniques are more promising to detect DA in real samples. However, utilizing conventional electrodes for selective determination of DA encounters numerous problems due to the coexistence of other materials, such as uric acid and ascorbic acid, which have an oxidation potential close to DA. To overcome such problems, researchers have put their focus on the modification of bare electrodes. The aim of this review is to present recent advances in modifications of most used bare electrodes with carbonaceous materials, especially graphene, its derivatives, and carbon nanotubes, for electrochemical detection of DA. A brief discussion about the mechanistic phenomena at the electrode interface has also been included in this review.
Collapse
Affiliation(s)
- Santa Islam
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Syed Shaheen Shah
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia.,Physics Department, King Fahd University of Petroleum & Minerals, KFUPM Box 5047, Dhahran, 31261, Saudi Arabia
| | - Shamsun Naher
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Muhammad Ali Ehsan
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - A J Saleh Ahammad
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| |
Collapse
|
14
|
A novel graphene quantum dots/choline chloride/gold nanoparticles-modified carbon fiber microelectrode for sensitive and selective determination of dopamine in the presence of a high concentration of ascorbic acid. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Simultaneous determination of nitrophenol isomers based on reduced graphene oxide modified with sulfobutylether-β-cyclodextrin. Carbohydr Polym 2021; 271:118446. [PMID: 34364581 DOI: 10.1016/j.carbpol.2021.118446] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022]
Abstract
The present study reports the development of an electrochemical sensor based on sulfobutylether-β-cyclodextrin modified reduced graphene oxide hybrid (SBCD-rGO) for simultaneous detection of nitrophenol isomers. First, SBCD-rGO hybrid was synthesized and detailed characterized. Afterwards, a sensor was fabricated via the modification of glassy carbon electrode (GCE) with SBCD-rGO, and its electrochemical detection performances were also investigated. Then, the constructed electrochemical sensor was applied to detect nitrophenol isomers by voltammetry analysis. The results suggested that the sensitivities were 389.26, 280.88 and 217.19 μA/mM for p-nitrophenol (p-NP), m-nitrophenol (m-NP), and o-nitrophenol (o-NP), respectively, and their corresponding detection limits were all about 0.05 μM. Significantly, the combination of voltammetry analysis with the constructed sensor and data analysis by multiple linear regression realized the simultaneous detection of nitrophenol isomers.
Collapse
|
16
|
Ansari R, Hasanzadeh M, Ehsani M, Soleymani J, Jouyban A. Sensitive identification of silibinin as anticancer drug in human plasma samples using poly (β-CD)-AgNPs: A new platform towards efficient clinical pharmacotherapy. Biomed Pharmacother 2021; 140:111763. [PMID: 34044273 DOI: 10.1016/j.biopha.2021.111763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/15/2021] [Accepted: 05/20/2021] [Indexed: 10/01/2022] Open
Abstract
Silibinin is effective in significantly inhibiting the growth of cancer cells which shown significant anti-neoplastic effects in a variety of in vitro and in vivo cancer models, including skin, breast, lung, colon, bladder, prostate and kidney carcinomas. So, development of a new method to its biomedical analysis in clinical samples in highly demanded. In this study, an innovative electroanalysis method for the accurate, sensitive and rapid recognition of silibinin in human plasma samples was proposed and validated. The sensing platform was designed using silver nanoparticles (AgNPs) dispersed on the polymeric layer of β-cyclodextrin (β-CD). AgNPs with cubic shape providing a large effective surface area for β-CD electropolymerization. So, a layer with high electron conductivity boosting the detection electrochemical signals. Also, poly(β-CD) providing an efficient substrate with cavities to interact with silibinin and its oxidation. Differential pulse voltammetry technique was conducted to measure silibinin concentration in human real samples. Under optimized conditions, proposed sensor indicated linear relationship between the anodic peak current and concentration of silibinin in the range of 0.0103-10.3 µM on the standard and human plasma samples. Based on obtained results, proposed sensor is an efficient platform to efficient therapy of cancer based on recognition of silibinin in clinical samples.
Collapse
Affiliation(s)
- Rana Ansari
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Ehsani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Healy B, Yu T, C. da Silva Alves D, Okeke C, Breslin CB. Cyclodextrins as Supramolecular Recognition Systems: Applications in the Fabrication of Electrochemical Sensors. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1668. [PMID: 33800708 PMCID: PMC8036645 DOI: 10.3390/ma14071668] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/17/2021] [Accepted: 03/24/2021] [Indexed: 12/31/2022]
Abstract
Supramolecular chemistry, although focused mainly on noncovalent intermolecular and intramolecular interactions, which are considerably weaker than covalent interactions, can be employed to fabricate sensors with a remarkable affinity for a target analyte. In this review the development of cyclodextrin-based electrochemical sensors is described and discussed. Following a short introduction to the general properties of cyclodextrins and their ability to form inclusion complexes, the cyclodextrin-based sensors are introduced. This includes the combination of cyclodextrins with reduced graphene oxide, carbon nanotubes, conducting polymers, enzymes and aptamers, and electropolymerized cyclodextrin films. The applications of these materials as chiral recognition agents and biosensors and in the electrochemical detection of environmental contaminants, biomolecules and amino acids, drugs and flavonoids are reviewed and compared. Based on the papers reviewed, it is clear that cyclodextrins are promising molecular recognition agents in the creation of electrochemical sensors, chiral sensors, and biosensors. Moreover, they have been combined with a host of materials to enhance the detection of the target analytes. Nevertheless, challenges remain, including the development of more robust methods for the integration of cyclodextrins into the sensing unit.
Collapse
Affiliation(s)
- Bronach Healy
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland; (B.H.); (T.Y.); (D.C.d.S.A.); (C.O.)
| | - Tian Yu
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland; (B.H.); (T.Y.); (D.C.d.S.A.); (C.O.)
| | - Daniele C. da Silva Alves
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland; (B.H.); (T.Y.); (D.C.d.S.A.); (C.O.)
- School of Chemistry and Food, Federal University of Rio Grande, Rio Grande 90040-060, Brazil
| | - Cynthia Okeke
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland; (B.H.); (T.Y.); (D.C.d.S.A.); (C.O.)
| | - Carmel B. Breslin
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland; (B.H.); (T.Y.); (D.C.d.S.A.); (C.O.)
| |
Collapse
|
18
|
Electrochemical Characterization of Melamine Electropolymerized in Deep Eutectic Solvents for Selective Detection of Dopamine. Electrocatalysis (N Y) 2021. [DOI: 10.1007/s12678-021-00648-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Terán-Alcocer Á, Bravo-Plascencia F, Cevallos-Morillo C, Palma-Cando A. Electrochemical Sensors Based on Conducting Polymers for the Aqueous Detection of Biologically Relevant Molecules. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:252. [PMID: 33478121 PMCID: PMC7835872 DOI: 10.3390/nano11010252] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022]
Abstract
Electrochemical sensors appear as low-cost, rapid, easy to use, and in situ devices for determination of diverse analytes in a liquid solution. In that context, conducting polymers are much-explored sensor building materials because of their semiconductivity, structural versatility, multiple synthetic pathways, and stability in environmental conditions. In this state-of-the-art review, synthetic processes, morphological characterization, and nanostructure formation are analyzed for relevant literature about electrochemical sensors based on conducting polymers for the determination of molecules that (i) have a fundamental role in the human body function regulation, and (ii) are considered as water emergent pollutants. Special focus is put on the different types of micro- and nanostructures generated for the polymer itself or the combination with different materials in a composite, and how the rough morphology of the conducting polymers based electrochemical sensors affect their limit of detection. Polypyrroles, polyanilines, and polythiophenes appear as the most recurrent conducting polymers for the construction of electrochemical sensors. These conducting polymers are usually built starting from bifunctional precursor monomers resulting in linear and branched polymer structures; however, opportunities for sensitivity enhancement in electrochemical sensors have been recently reported by using conjugated microporous polymers synthesized from multifunctional monomers.
Collapse
Affiliation(s)
- Álvaro Terán-Alcocer
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, 100119 Urcuquí, Ecuador; (Á.T.-A.); (F.B.-P.)
| | - Francisco Bravo-Plascencia
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, 100119 Urcuquí, Ecuador; (Á.T.-A.); (F.B.-P.)
| | - Carlos Cevallos-Morillo
- Facultad de Ciencias Químicas, Universidad Central del Ecuador, Francisco Viteri s/n y Gato Sobral, 170129 Quito, Ecuador;
| | - Alex Palma-Cando
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, 100119 Urcuquí, Ecuador; (Á.T.-A.); (F.B.-P.)
| |
Collapse
|
20
|
Madhurantakam S, Karnam JB, Brabazon D, Takai M, Ahad IU, Balaguru Rayappan JB, Krishnan UM. "Nano": An Emerging Avenue in Electrochemical Detection of Neurotransmitters. ACS Chem Neurosci 2020; 11:4024-4047. [PMID: 33285063 DOI: 10.1021/acschemneuro.0c00355] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The growing importance of nanomaterials toward the detection of neurotransmitter molecules has been chronicled in this review. Neurotransmitters (NTs) are chemicals that serve as messengers in synaptic transmission and are key players in brain functions. Abnormal levels of NTs are associated with numerous psychotic and neurodegenerative diseases. Therefore, their sensitive and robust detection is of great significance in clinical diagnostics. For more than three decades, electrochemical sensors have made a mark toward clinical detection of NTs. The superiority of these electrochemical sensors lies in their ability to enable sensitive, simple, rapid, and selective determination of analyte molecules while remaining relatively inexpensive. Additionally, these sensors are capable of being integrated in robust, portable, and miniaturized devices to establish point-of-care diagnostic platforms. Nanomaterials have emerged as promising materials with significant implications for electrochemical sensing due to their inherent capability to achieve high surface coverage, superior sensitivity, and rapid response in addition to simple device architecture and miniaturization. Considering the enormous significance of the levels of NTs in biological systems and the advances in sensing ushered in with the integration of nanotechnology in electrochemistry, the analysis of NTs by employing nanomaterials as interface materials in various matrices has emerged as an active area of research. This review explores the advancements made in the field of electrochemical sensors for the sensitive and selective determination of NTs which have been described in the past two decades with a distinctive focus on extremely innovative attributes introduced by nanotechnology.
Collapse
Affiliation(s)
- Sasya Madhurantakam
- Department of Molecular Physiology, Niigata University School of Medicine, Niigata 951-8510, Japan
| | - Jayanth Babu Karnam
- School of Electrical and Electronics Engineering, SASTRA Deemed University, Thanjavur 613401, India
- Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur 613401, India
| | - Dermot Brabazon
- I-Form, Advanced Manufacturing Research Centre, Advanced Processing Technology Research Centre, Dublin City University, Dublin, Ireland
| | - Madoka Takai
- Department of Bioengineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Inam Ul Ahad
- I-Form, Advanced Manufacturing Research Centre, Advanced Processing Technology Research Centre, Dublin City University, Dublin, Ireland
| | | | - Uma Maheswari Krishnan
- Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur 613401, India
- School of Arts, Science & Humanities, SASTRA Deemed University, Thanjavur 613401, India
| |
Collapse
|
21
|
Ternary Pt–Au–FeOOH-decorated polyaniline nanocomposite for sensitive dopamine electrochemical detection. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Elugoke SE, Adekunle AS, Fayemi OE, Akpan ED, Mamba BB, Sherif EM, Ebenso EE. Molecularly imprinted polymers (MIPs) based electrochemical sensors for the determination of catecholamine neurotransmitters – Review. ELECTROCHEMICAL SCIENCE ADVANCES 2020. [DOI: 10.1002/elsa.202000026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Saheed E. Elugoke
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
- Department of Chemistry School of Physical and Chemical Sciences Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
| | - Abolanle S. Adekunle
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
- Department of Chemistry School of Physical and Chemical Sciences Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
- Department of Chemistry Obafemi Awolowo University Ile‐Ife Nigeria
| | - Omolola E. Fayemi
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
- Department of Chemistry School of Physical and Chemical Sciences Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
| | - Ekemini D. Akpan
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
| | - Bhekie B. Mamba
- Institute for Nanotechnology and Water Sustainability College of Science Engineering and Technology University of South Africa Johannesburg South Africa
| | - El‐Sayed M. Sherif
- Center of Excellence for Research in Engineering Materials (CEREM) King Saud University Al‐Riyadh Saudi Arabia
- Electrochemistry and Corrosion Laboratory Department of Physical Chemistry National Research Centre Dokki Cairo Egypt
| | - Eno E. Ebenso
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
- Institute for Nanotechnology and Water Sustainability College of Science Engineering and Technology University of South Africa Johannesburg South Africa
| |
Collapse
|
23
|
Elugoke SE, Adekunle AS, Fayemi OE, Mamba BB, Nkambule TT, Sherif EM, Ebenso EE. Progress in electrochemical detection of neurotransmitters using carbon nanotubes/nanocomposite based materials: A chronological review. NANO SELECT 2020. [DOI: 10.1002/nano.202000082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Saheed E. Elugoke
- Material Science Innovation and Modelling (MaSIM) Research Focus Area Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
- Department of Chemistry School of Physical and Chemical Sciences Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
| | - Abolanle S. Adekunle
- Material Science Innovation and Modelling (MaSIM) Research Focus Area Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
- Department of Chemistry School of Physical and Chemical Sciences Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
- Department of Chemistry Obafemi Awolowo University PMB Ile‐Ife Nigeria
| | - Omolola E. Fayemi
- Material Science Innovation and Modelling (MaSIM) Research Focus Area Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
- Department of Chemistry School of Physical and Chemical Sciences Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
| | - Bhekie B. Mamba
- Nanotechnology and Water Sustainability Research Unit College of Science Engineering and Technology University of South Africa Johannesburg South Africa
| | - Thabo T.I. Nkambule
- Nanotechnology and Water Sustainability Research Unit College of Science Engineering and Technology University of South Africa Johannesburg South Africa
| | - El‐Sayed M. Sherif
- Center of Excellence for Research in Engineering Materials (CEREM) King Saud University Al‐Riyadh Saudi Arabia
- Electrochemistry and Corrosion Laboratory Department of Physical Chemistry National Research Centre Dokki Cairo Egypt
| | - Eno E. Ebenso
- Material Science Innovation and Modelling (MaSIM) Research Focus Area Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
- Department of Chemistry School of Physical and Chemical Sciences Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
- Nanotechnology and Water Sustainability Research Unit College of Science Engineering and Technology University of South Africa Johannesburg South Africa
| |
Collapse
|
24
|
Guan JF, Zou J, Liu YP, Jiang XY, Yu JG. Hybrid carbon nanotubes modified glassy carbon electrode for selective, sensitive and simultaneous detection of dopamine and uric acid. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110872. [PMID: 32559693 DOI: 10.1016/j.ecoenv.2020.110872] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/04/2020] [Accepted: 06/07/2020] [Indexed: 05/20/2023]
Abstract
Based on a hybrid carbon nanotube composite, a novel electrochemical sensor with high sensitivity and selectivity was designed for the simultaneous determination of dopamine (DA) and uric acid (UA). The hybrid carbon nanotube composite was prepared by ultrasonic assembly of carboxylated multi-walled carbon nanotube (MWCNT-COOH) and hydroxylated single-walled carbon nanotube (SWCNT-OH). And the hybrid (MWCNT-COOH/SWCNT-OH) composite was characterized by field emission scanning electron microscopy (FE-SEM) and Fourier transform infrared (FT-IR) spectroscopy. The electrochemical performances of MWCNT-COOH/SWCNT-OH composite modified glassy carbon electrode (MWCNT-COOH/SWCNT-OH/GCE) were analyzed by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV). Under the optimum experimental conditions, the as-prepared sensor showed high sensitivity and selectivity for DA and UA. The calibration curves obtained were linear for the currents versus DA and UA concentrations in the range 2-150 μM, and limits of detection (LODs) were calculated to be 0.37 μM and 0.61 μM (signal-to-noise ratio of 3, S/N = 3), respectively. The recoveries of DA and UA in bovine serum samples at MWCNT-COOH/SWCNT-OH/GCE were in the range 96.18-105.02%, and relative standard deviations (RSDs) were 3.34-7.27%. The proposed electrochemical sensor showed good anti-interference ability, excellent reproducibility and stability, as well as high selectivity, which might provide a promising platform for determination of DA and UA.
Collapse
Affiliation(s)
- Jin-Feng Guan
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Jiao Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Yi-Ping Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Xin-Yu Jiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Jin-Gang Yu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China.
| |
Collapse
|
25
|
Lv C, Li S, Liu L, Zhu X, Yang X. Enhanced Electrochemical Characteristics of the Glucose Oxidase Bioelectrode Constructed by Carboxyl-Functionalized Mesoporous Carbon. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3365. [PMID: 32545838 PMCID: PMC7349592 DOI: 10.3390/s20123365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/07/2020] [Accepted: 06/11/2020] [Indexed: 01/04/2023]
Abstract
This research revealed the effect of carboxyl-functionalization on the mesoporous carbon (MC)-fixed glucose oxidase (GOx) for promoting the properties of bioelectrodes. It showed that the oxidation time, temperature and concentration, can significantly affect MC carboxylation. The condition of 2 M ammonium persulfate, 50 °C and 24 h was applied in the study for the successful addition of carboxyl groups to MC, analyzed by FTIR. The nitrogen adsorption isotherms, and X-ray diffraction analysis showed that the carboxylation process slightly changed the physical properties of MC and that the specific surface area and pore size were all well-maintained in MC-COOH. Electrochemical characteristics analysis showed that Nafion/GOx/MC-COOH presented better electrocatalytic activity with greater peak current intensity (1.13-fold of oxidation peak current and 4.98-fold of reduction peak current) compared to Nafion/GOx/MC. Anodic charge-transfer coefficients (α) of GOx/MC-COOH increased to 0.77, implying the favored anodic reaction. Furthermore, the GOx immobilization and enzyme activity in MC-COOH increased 140.72% and 252.74%, leading to the enhanced electroactive GOx surface coverage of Nafion/GOx/MC-COOH electrode (22.92% higher, 1.29 × 10-8 mol cm-2) than the control electrode. Results showed that carboxyl functionalization could increase the amount and activity of immobilized GOx, thereby improving the electrode properties.
Collapse
Affiliation(s)
- Chuhan Lv
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (C.L.); (S.L.); (L.L.); (X.Z.)
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| | - Shuangfei Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (C.L.); (S.L.); (L.L.); (X.Z.)
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| | - Liangxu Liu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (C.L.); (S.L.); (L.L.); (X.Z.)
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| | - Xingyu Zhu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (C.L.); (S.L.); (L.L.); (X.Z.)
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| | - Xuewei Yang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (C.L.); (S.L.); (L.L.); (X.Z.)
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|