1
|
Abdelhamid HN, Mathew AP. In-situ growth of zeolitic imidazolate frameworks into a cellulosic filter paper for the reduction of 4-nitrophenol. Carbohydr Polym 2021; 274:118657. [PMID: 34702476 DOI: 10.1016/j.carbpol.2021.118657] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/30/2021] [Accepted: 09/06/2021] [Indexed: 02/01/2023]
Abstract
Whatman® cellulosic filter paper was used as a substrate for the synthesis of two zeolitic imidazolate frameworks (ZIFs); ZIF-8 and ZIF-67 with and without 2,2,6,6-tetramethyl-1-piperidine oxoammonium salt (TEMPO)-oxidized cellulose nanofibril (TOCNF). All synthesis procedures take place at room temperature via a one-pot procedure. The synthesis steps were followed using X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transforms infrared (FT-IR). Data indicated the formation of metal oxide that converted to a pure phase of ZIFs after the addition of the organic linker i.e. 2-methyl imidazole (Hmim). The materials were characterized using XRD, FT-IR, SEM, energy dispersive X-ray (EDX), nitrogen adsorption-desorption isotherms, and X-ray photoelectron microscope (XPS). Data analysis confirms the synthesis of ZIFs into Whatman® filter paper. The materials were used for the reduction of pollutants such as 4-nitrophenol (4-NP) compound to 4-aminophenol (4-AP). The materials exhibit high potential for water treatment and may open new exploration for hybrid materials consisting of cellulose and ZIFs.
Collapse
Affiliation(s)
- Hani Nasser Abdelhamid
- Department of Materials and Environmental Chemistry, Stockholm University, SE-10691 Stockholm, Sweden; Advanced Multifunctional Materials Laboratory, Department of Chemistry, Faculty of Science, Assiut University, Assiut 71515, Egypt.
| | - Aji P Mathew
- Department of Materials and Environmental Chemistry, Stockholm University, SE-10691 Stockholm, Sweden.
| |
Collapse
|
2
|
Wazuddin DA, Mujawar LH, Abduljabbar TN, El-Shahawi MS. In-situ droplet assay on wax-modified paper for rapid and trace determination of Fe3+ in water. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
3
|
El-Shahawi MS, Alsibaai AA, Bashammakh AS, Al-Ariqei HK. A highly sensitive electrochemical probe for trace determination and chemical speciation of lead in water and foodstuffs using Thorin-I as a selective chelating agent. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-020-01500-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
4
|
Wu X, Yin Q, Huang Q, Mao Y, Hu Q, Wang H. Rational designing an azo colorimetric sensor with high selectivity and sensitivity for uranium environmental monitoring. Anal Chim Acta 2020; 1140:153-167. [DOI: 10.1016/j.aca.2020.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/02/2020] [Accepted: 10/03/2020] [Indexed: 10/23/2022]
|
5
|
Sachdev A, Samanta P, Kumar V, Garima, Kandhal K, Matai I. PMAA-CeO 2 nanoparticle-based paper microfluidic device with customized image processing software for antioxidant assay. Anal Bioanal Chem 2020; 412:8197-8209. [PMID: 32995939 DOI: 10.1007/s00216-020-02960-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/10/2020] [Accepted: 09/18/2020] [Indexed: 12/21/2022]
Abstract
Despite recent advancements in the field of microfluidic paper-based analytical devices (μPADs), a key challenge remains in developing a simple and efficient μPAD with customized imaging capabilities for antioxidant assays. In the present study, we report a facile approach for μPAD fabrication through the application of transparent nail paint leading to creation of hydrophobic barriers and well-defined channels. The resultant μPADs were then characterized through scanning electron microscopy and contact angle measurements. The resolution and functional features of the fabricated μPAD were amenable to the intended assay. The μPAD's impregnated poly(methacrylic acid) (PMAA)-coated cerium oxide (CeO2) nanoparticles oxidized the 3,3',5,5'-tetramethylbenzidine (TMB) leading to the formation of a blue-colored charge-transfer complex. The addition of different antioxidant standard solutions resulted in a reduction in the blue color in a dose-dependent manner which could be observed visually. The color intensity of the PMAA-CeO2 nanoparticle@TMB oxidation product was inversely proportional to the antioxidant concentration and was measured using customized in-house MATLAB-based image processing software. Importantly, PMAA-CeO2 nanoparticle-based μPADs demonstrated good analytical characteristics and were able to be stored for long periods without any loss of activity. Moreover, potential interferents did not pose any threat to the colorimetric signal read-out for determination of antioxidant activity. The developed method was further applied for the assessment of antioxidant activity in a variety of tea samples and performed satisfactorily in comparison with a commonly used antioxidant detection method. Collectively, the developed μPAD-based platform holds great potential as a low-cost, convenient, portable and reliable method for pursuing various on-site antioxidant assays. Graphical Abstract.
Collapse
Affiliation(s)
- Abhay Sachdev
- Ubiquitous Analytical Techniques Division, CSIR-Central Scientific Instruments Organization (CSIR-CSIO), Chandigarh, 160030, India. .,Academy of Scientific and Innovative Research (AcSIR-CSIO), Chandigarh, 160030, India.
| | - Pradipta Samanta
- Ubiquitous Analytical Techniques Division, CSIR-Central Scientific Instruments Organization (CSIR-CSIO), Chandigarh, 160030, India.,Academy of Scientific and Innovative Research (AcSIR-CSIO), Chandigarh, 160030, India
| | - Vijayesh Kumar
- Ubiquitous Analytical Techniques Division, CSIR-Central Scientific Instruments Organization (CSIR-CSIO), Chandigarh, 160030, India
| | - Garima
- Ubiquitous Analytical Techniques Division, CSIR-Central Scientific Instruments Organization (CSIR-CSIO), Chandigarh, 160030, India.,Academy of Scientific and Innovative Research (AcSIR-CSIO), Chandigarh, 160030, India
| | - Karina Kandhal
- Ubiquitous Analytical Techniques Division, CSIR-Central Scientific Instruments Organization (CSIR-CSIO), Chandigarh, 160030, India
| | - Ishita Matai
- Ubiquitous Analytical Techniques Division, CSIR-Central Scientific Instruments Organization (CSIR-CSIO), Chandigarh, 160030, India. .,Academy of Scientific and Innovative Research (AcSIR-CSIO), Chandigarh, 160030, India.
| |
Collapse
|