1
|
Ashry A, Rabia M, Mostafa SM, Korany MA, Farghali AA, Khalil MM. β-Cyclodextrin/Zn-Fe layered double hydroxides/graphitic carbon nitride nanomaterials based potentiometric sensor for paroxetine determination in environmental water samples. RSC Adv 2024; 14:34791-34803. [PMID: 39483389 PMCID: PMC11526227 DOI: 10.1039/d4ra03863k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 10/14/2024] [Indexed: 11/03/2024] Open
Abstract
Developing targeted and sensitive analytical techniques for drug monitoring in different specimens are of utmost importance. Herein, a first attempt was made for the determination of paroxetine (Prx+) in environmental water samples using a novel, sensitive, selective, stable, accurate and eco-friendly potentiometric sensor based on Zn-Fe layered double hydroxides/graphitic carbon nitride (Zn-Fe LDH/g-C3N4) nanomaterials with β-cyclodextrin (β-CD) as the sensing ionophore and dibutyl phthalate (DBP) as the plasticizer. The prepared nanomaterial was characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The surface properties of the proposed sensor were characterized by electrochemical impedance spectroscopy (EIS). The sensor exhibited an excellent Nernstian slope of 59.3 ± 0.7 mV decade-1 covering a wide linear working range of 1.0 × 10-6 to 1.0 × 10-2 mol L-1, low detection limit of 3.0 × 10-7 mol L-1, low quantification limit of 9.9 × 10-7 mol L-1, long life time, sufficient selectivity, high chemical and thermal stability within a wide pH range of 2.0-9.0. This analytical method was successfully implemented for Prx+ determination in a pure form, pharmaceutical formulation and different water samples.
Collapse
Affiliation(s)
- Ahmed Ashry
- Chemistry Department, Faculty of Science, Beni-Suef University Beni-Suef Egypt
| | - Mohamed Rabia
- Nanomaterials Science Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University Beni-Suef 62514 Egypt
| | | | - Mohamed Ali Korany
- Chemistry Department, Faculty of Science, Beni-Suef University Beni-Suef Egypt
| | - Ahmed Ali Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University Egypt
| | | |
Collapse
|
2
|
Ravele T, Fuku XG, Hlongwa NW, Nkambule TTI, Gumbi NN, Sekhosana KE. Advances in Electrochemical Systems for Detection of Anti‐Androgens in Water Bodies. ChemistrySelect 2023. [DOI: 10.1002/slct.202203768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Thompho Ravele
- Institute for Nanotechnology and Water Sustainability (iNanoWS) College of Science Engineering and Technology (CSET) University of South Africa Cnr Christiaan De Wet and Pioneer Avenue, Florida Roodepoort 1709 South Africa
| | - Xolile G. Fuku
- Institute for Nanotechnology and Water Sustainability (iNanoWS) College of Science Engineering and Technology (CSET) University of South Africa Cnr Christiaan De Wet and Pioneer Avenue, Florida Roodepoort 1709 South Africa
| | - Ntuthuko W. Hlongwa
- Institute for Nanotechnology and Water Sustainability (iNanoWS) College of Science Engineering and Technology (CSET) University of South Africa Cnr Christiaan De Wet and Pioneer Avenue, Florida Roodepoort 1709 South Africa
| | - Thabo T. I. Nkambule
- Institute for Nanotechnology and Water Sustainability (iNanoWS) College of Science Engineering and Technology (CSET) University of South Africa Cnr Christiaan De Wet and Pioneer Avenue, Florida Roodepoort 1709 South Africa
| | - Nozipho N. Gumbi
- Institute for Nanotechnology and Water Sustainability (iNanoWS) College of Science Engineering and Technology (CSET) University of South Africa Cnr Christiaan De Wet and Pioneer Avenue, Florida Roodepoort 1709 South Africa
| | - Kutloano E. Sekhosana
- Institute for Nanotechnology and Water Sustainability (iNanoWS) College of Science Engineering and Technology (CSET) University of South Africa Cnr Christiaan De Wet and Pioneer Avenue, Florida Roodepoort 1709 South Africa
| |
Collapse
|
3
|
Faisal A. Salih, Novakovskii AD, Egorov VV. Verapamil-Sensitive Electrodes: Main Factors Responsible for Analytical Performance and Use in Drug Analysis. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822120127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
LUO Y, HUANG Y, LI Y, FENG J. Development of Electrochemiluminecence Sensor for Verapamil Hydrochloride Based on TiO<sub>2</sub> sol/ZnO@Ag/Silica sol-Ru(bpy)<sub>3</sub><sup>2+</sup> Modified Pyrolytic Graphite Electrode. ELECTROCHEMISTRY 2022. [DOI: 10.5796/electrochemistry.22-00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Ying LUO
- School of Food and Chemical Engineering, Liuzhou Institute and Technology
| | | | - Yanqing LI
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology
| | - Jun FENG
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology
| |
Collapse
|
5
|
Zeng X, Jiang W, Waterhouse GIN, Jiang X, Zhang Z, Yu L. Stable Pb(II) ion-selective electrodes with a low detection limit using silver nanoparticles/polyaniline as the solid contact. Mikrochim Acta 2021; 188:393. [PMID: 34698939 DOI: 10.1007/s00604-021-05046-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/03/2021] [Indexed: 11/30/2022]
Abstract
Solid contact-based ion-selective electrodes (SC-ISEs) based on silver nanoparticles/polyaniline (Ag@PANI) as the solid contact (SC) were successfully prepared. The Ag@PANI SC showed high capacitance and excellent electron transport performance. Owing to the synergetic effects of the Ag nanoparticles and PANI, a GC/Ag@PANI-II/Pb2+-ISE (where II refers to a Ag content of 0.01 wt% in the SC layer) showed a low Pb2+ detection limit (6.31 × 10-10 M) with a slope of 29.1 ± 0.3 mV/dec, a fast response (< 5 s), and high stability. GC/Ag@PANI-II/Pb2+-ISE exhibited a Nernstian response for Pb2+ ions over a wide concentration range (10-3 to 10-9 M). After a 3-week operation, GC/Ag@PANI-II/Pb2+-ISE responded linearly to Pb2+ over the range of 10-7-10-3 M, demonstrating good long-term potential stability. Furthermore, the electrode showed excellent reproducibility and repeatability of the potential values and was successfully applied to detect the Pb2+ concentration in real samples with a recovery of 97 - 109%. Results suggest that Ag@PANI composites offer good transducer performance in trace ion detection sensors.
Collapse
Affiliation(s)
- Xianghua Zeng
- Frontiers Science Center for Deep Ocean Multi Spheres and Earth System and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266100, People's Republic of China
| | - Wenwen Jiang
- Frontiers Science Center for Deep Ocean Multi Spheres and Earth System and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266100, People's Republic of China
| | | | - Xiaohui Jiang
- Frontiers Science Center for Deep Ocean Multi Spheres and Earth System and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266100, People's Republic of China
| | - Zhiming Zhang
- Frontiers Science Center for Deep Ocean Multi Spheres and Earth System and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266100, People's Republic of China.
| | - Liangmin Yu
- Frontiers Science Center for Deep Ocean Multi Spheres and Earth System and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266100, People's Republic of China.
| |
Collapse
|
6
|
Mutić S, Radanović D, Vraneš M, GadŽurić S, Anojčić J. Electroanalytical performance of a β-cyclodextrin and ionic liquid modified carbon paste electrode for the determination of verapamil in urine and pharmaceutical formulation. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2963-2973. [PMID: 34110333 DOI: 10.1039/d1ay00358e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The analytical performance of sensitive and cost-effective electrochemical sensors based on ionic liquids (ILs) with the bis(trifluoromethylsulfonyl)imide anion, [NTf2]-, and the imidazolium cation with different alkyl chain lengths for electrochemical oxidation of verapamil (VER) was investigated. 1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][NTf2]), 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIM][NTf2]) and 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([HMIM][NTf2]) were studied as possible materials for modification of a carbon paste electrode (CPE) for trace-level determination of VER. The experimental parameters including selection of the working electrode, the pH of working media, and the amount of CPE modifiers were investigated. Among them, the [EMIM][NTf2]-CPE with 4.3 wt% of IL was selected as the most appropriate for the square wave voltammetric (SWV) determination of VER at pH 5.0. Cyclic voltammetric studies showed that the electrochemical oxidation of VER was adsorption controlled. Consequently, the square wave adsorptive stripping voltammetric (SW-AdSV) parameters were optimized with Eacc = -0.4 V and tacc = 180 s as the most suitable for accumulation of VER on the electrode surface. The electroanalytical performance of the [EMIM][NTf2]-CPE was further improved by its in situ electrochemical modification with β-cyclodextrin (β-CD) and the linear concentration range of VER was from 0.006 to 0.129 μg mL-1; the relative standard deviation did not exceed 0.7%, and the evaluated limit of detection in model solution was 0.002 μg mL-1. The β-CD/[EMIM][NTf2]-CPE showed adequate selectivity towards VER in the presence of inorganic ions and interferents usually found in human urine. The proposed sensor was successfully applied for VER determination in a spiked human urine sample and pharmaceutical formulation with good repeatability and recovery.
Collapse
Affiliation(s)
- Sanja Mutić
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia.
| | - Danka Radanović
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia.
| | - Milan Vraneš
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia.
| | - Slobodan GadŽurić
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia.
| | - Jasmina Anojčić
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia.
| |
Collapse
|
7
|
Improving the stability of Pb2+ ion-selective electrodes by using 3D polyaniline nanowire arrays as the inner solid-contact transducer. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138414] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
8
|
Mahmoud Mostafa S, Ali Farghali A, Magdy Khalil M. Novel Zn‐Fe LDH/MWCNT
s
and Graphene/MWCNTs Nanocomposites Based Potentiometric Sensors for Benzydamine Determination in Biological Fluids and Real Water Samples. ELECTROANAL 2021. [DOI: 10.1002/elan.202060455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Ahmed Ali Farghali
- Materials Science and Nanotechnology Department Faculty of Postgraduate Studies for Advanced Sciences Beni-Suef University Beni-Suef Egypt
| | | |
Collapse
|
9
|
|