1
|
Zhang Z, Bai L, Han J, Li Z, Liu Q. Convenient and visual ethephon detection in fruits by enhanced fluorescence of metal-organic framework. Mikrochim Acta 2025; 192:55. [PMID: 39755984 DOI: 10.1007/s00604-024-06886-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025]
Abstract
For the first time a novel fluorescent La@ZrMOF nanomaterial was synthesized for the convenient and visual detection of ethephon (ETH) based on the ligand-metal charge transfer process. The fluorescence signal gradually enhanced as the concentration of ETH increased, accompanied by a change in the color from colorless to blue. The assay can be completed within 75 min with a detection limit of 0.03 mg/L. A paper-based approach for the rapid and visual determination of ETH has also been devised, enabling the efficient used in a variety of actual products, with apples, pears, and tomatoes as examples. It proved to be simple, easy to use, and sensitive, and has the potential for further uses of ETH detection.
Collapse
Affiliation(s)
- Zhikun Zhang
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Liwei Bai
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Jilong Han
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China.
| | - Zhengjie Li
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China.
| | - Qingju Liu
- Institute of Quality Standard and Testing Technology of Beijing Academy of Agriculture and Forestry Sciences, Beijing, 10097, China.
| |
Collapse
|
2
|
Chang H, Tan P, Chen X, Liu T, Lu Z, Sun M, Su G, Wang Y, Zou Y, Rao H, Wu C. Real-time intelligent detection of ethephon based on a high-throughput ratiometric fluorescent probe. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133156. [PMID: 38061128 DOI: 10.1016/j.jhazmat.2023.133156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/19/2023] [Accepted: 11/29/2023] [Indexed: 02/08/2024]
Abstract
Ethephon (ETH) is a common pesticide, and its overuse has resulted in a variety of health problems for humans. However, the existing ETH detection methods are tedious and time-consuming, and real-time ETH identification remains a significant difficulty. To mitigate this concern, a dual-emission ratiometric fluorescent probe Ru@ZrMOF was rationally synthesized for the detection of ETH. In the presence of ETH, the emission peak at 435 nm gradually increased, while the peak at 600 nm remained constant, accompanied by the fluorescence color change from red, pink, blue-violet to blue. The fluorescence intensity ratio (F435/F600) demonstrated two linear relations with the ETH concentration ranges at 3 - 50 μM and 50 - 500 μM, with a lowest detection limit at 1 μM. This was attributed to the formation of Zr-O-P bonds which attenuated the ligand-metal charge transfer (LMCT) process, resulting in the recovery of blue fluorescence of the ligand 2-Aminoterephthalic acid (2-APDC). To validate the practical application of the developed platform, a YOLO v5x-based WeChat applet "96 Speckles" was developed, and a 96-well plate and smartphone-embedded 3D-printed portable toolbox was designed for the real-time intelligent detection of ETH. This smart platform allows for real-time and efficient ETH analysis in various real samples including apples, pears and tomatoes.
Collapse
Affiliation(s)
- Hongrong Chang
- College of Science, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an 625014, China
| | - Ping Tan
- College of Science, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an 625014, China
| | - Xianjin Chen
- College of Information Engineering, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an 625014, China
| | - Tao Liu
- College of Information Engineering, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an 625014, China
| | - Zhiwei Lu
- College of Science, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an 625014, China
| | - Mengmeng Sun
- College of Science, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an 625014, China
| | - Gehong Su
- College of Science, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an 625014, China
| | - Yanying Wang
- College of Science, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an 625014, China
| | - Yuanfeng Zou
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Hanbing Rao
- College of Science, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an 625014, China.
| | - Chun Wu
- College of Science, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an 625014, China.
| |
Collapse
|
3
|
Nadeem F, Hanif MA, AlMasoud N, Alomar TS, Younis A. Efficient nanostructured materials to reduce nutrient leaching to overcome environmental contaminants. Sci Rep 2024; 14:4772. [PMID: 38413788 PMCID: PMC10899617 DOI: 10.1038/s41598-024-54049-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 02/08/2024] [Indexed: 02/29/2024] Open
Abstract
Nutrient leaching is a major reason for fresh and ground water contamination. Menthol is the major bioactive ingredient of Mentha arvensis L. and one of the most traded products of global essential oil market. The indigenous production of menthol crystals in developing countries of the world can prove to be the backbone for local growers and poor farmers. Therefore, present research was designed to check the effects of nano-structured plant growth regulators (PGRs) (28-homobrassinolide and ethephon) with reduced leaching potentials on the essential oil and menthol (%) of Mentha arvensis L. The prepared nano-formulations were characterized by Fourier transform infrared (FTIR) spectroscopy, Laser induced breakdown spectroscopy (LIBS), Differential scanning colorimetry-thermal gravimetric analysis (DSC-TGA), Scanning electron microscopy (SEM), Atomic absorption spectrometry (AAS) and Zeta potential and Zeta size analysis. The menthol (%) was determined by modified spectrophotometric and gas chromatographic (GC) method. The highest essential oil (%) was obtained by the application of 28-homobrassinolide-Zn-NPs-L-II (0.92 ± 0.09%) and ethephon-Ca-NPs-L-III (0.91 ± 0.05%) as compared to the control (0.65 ± 0.03%) and blank (0.62 ± 0.09%). The highest menthol (%) was obtained by applying 28-homobrassinolide-Ca-NPs-L-I (80.06 ± 0.07%), 28-homobrassinolide-Ca-NPs-L-II (80.48 ± 0.09%) and 28-homobrassinolide-Ca-NPs-L-III (80.84 ± 0.11%) and ethephon-Ca-NPs-L-III (81.53 ± 0.17%) and ethephon-Zn-NPs-L-II (81.93 ± 0.26%) as compared to control (67.19 ± 0.14%) and blank (63.93 ± 0.17%).
Collapse
Affiliation(s)
- Farwa Nadeem
- Nano and Biomaterials Lab, Department of Chemistry, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Asif Hanif
- Nano and Biomaterials Lab, Department of Chemistry, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Najla AlMasoud
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, 11671, Riyadh, Saudi Arabia
| | - Taghrid S Alomar
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, 11671, Riyadh, Saudi Arabia
| | - Adnan Younis
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| |
Collapse
|
4
|
Liu Q, Huang R, Tang J, Zhang H, Liu M, Fang Y. A Nanofilm-Based Fluorescent Sensor toward Highly Efficient Detection of Ethephon. Anal Chem 2024. [PMID: 38302113 DOI: 10.1021/acs.analchem.3c04999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Ethephon (ETH) is widely used to promote fruit ripening and improve fruit quality. However, improper use is harmful to human health and to the environmental safety. Therefore, development of the techniques for on-site and at real-time monitoring of ETH is of importance for its safe use. In this work, we developed a nanofilm-based fluorescence film sensor (FFS) and realized highly efficient detection of ETH in vapor phase, where the detection limit (DL) is <0.2 ppb, the response time is less than 10 s, and the interference is almost free. The unusual sensing performance of the sensor was ascribed to the specific binding of the nanofilm to ETH and to its great porosity, which enables efficient adlayer mass transfer, a requirement for high signal-to-noise ratio. Moreover, visualization-based qualitative sensing is also realized. The nanofilm, a key component of the sensor, was prepared at the humid air/DMSO interface. The building blocks used were a specially designed fluorescent o-carborane derivative (CB-2CHO) and a cross-linker BTN possessing three acylhydrazine groups. The nanofilm as prepared is flexible, uniform, thickness tunable, and photochemically super stable. We believe our effort not only addresses the challenging issue of on-site and at real-time detection of ETH but also provides another route for developing new FFSs via sensing film innovation.
Collapse
Affiliation(s)
- Qianqian Liu
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi' an 710062, P. R. China
| | - Rongrong Huang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi' an 710062, P. R. China
| | - Jiaqi Tang
- Xi'An Rare Matel Materials Institute Co. Ltd., Xi' an 710016, P. R. China
| | - Helan Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi' an 710062, P. R. China
| | - Mei Liu
- School of Food Science and Engineering, Shaanxi Normal University, Xi' an 710062, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi' an 710062, P. R. China
| |
Collapse
|
5
|
Xiu W, Zhao P, Pan Y, Wang X, Zhang L, Ge S, Yu J. Flexible SERS strip based on HKUST-1(cu)/biomimetic antibodies composite multilayer for trace determination of ethephon. Anal Chim Acta 2023; 1253:341097. [PMID: 36965996 DOI: 10.1016/j.aca.2023.341097] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/15/2023]
Abstract
A surface-enhanced Raman scattering (SERS) sensor based on the folding and assembly characteristics of the three-dimensional structure of paper fibers, the skeleton controllability of metal-organic framework materials (MOFs), and the morphology designability of plasmonic noble metal materials has been established for rapid on-site determination of ethephon in food. HKUST-1(Cu) was assembled onto a carbon-treated chromatographic paper matrix by electrodeposition, and its skeleton respiration and sponge effect were used to overcome the bottleneck problem of poor affinity of SERS substrate for target molecules. Further coupled with the targeted recognition specificity of biomimetic antibodies, a paper-based interface with high specificity of molecular sensitivity was constructed. A sandwich multi-stage progressive enhancement structure was designed to couple plasma pine branch-shaped silver material in situ at the interface to realize superposition and collaborative amplification of SERS signals. When the paper-based strip sensor was used to monitor ethephon, it demonstrated a linear range of 10-3 to 10 mg kg-1 and a detection limit of around 1.39 × 10-4 mg kg-1. The construction and application of the paper-based HKUST-1(Cu)/biomimetic antibodies/pine branch-shaped silver material sensor will provide technical means and theoretical support for the rapid and efficient identification of biological ripening agent residues in food with multi-level signal enhancement.
Collapse
Affiliation(s)
- Wenli Xiu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Peini Zhao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Yujie Pan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Xiaoru Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, 250022, PR China
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan, 250022, PR China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| |
Collapse
|
6
|
Fama F, Feltracco M, Moro G, Barbaro E, Bassanello M, Gambaro A, Zanardi C. Pesticides monitoring in biological fluids: Mapping the gaps in analytical strategies. Talanta 2023; 253:123969. [PMID: 36191513 DOI: 10.1016/j.talanta.2022.123969] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 12/13/2022]
Abstract
Pesticides play a key-role in the development of the agrifood sector allowing controlling pest growth and, thus, improving the production rates. Pesticides chemical stability is responsible of their persistency in environmental matrices leading to bioaccumulation in animal tissues and hazardous several effects on living organisms. The studies regarding long-term effects of pesticides exposure and their toxicity are still limited to few studies focusing on over-exposed populations, but no extensive dataset is currently available. Pesticides biomonitoring relies mainly on chromatographic techniques coupled with mass spectrometry, whose large-scale application is often limited by feasibility constraints (costs, time, etc.). On the contrary, chemical sensors allow rapid, in-situ screening. Several sensors were designed for the detection of pesticides in environmental matrices, but their application in biological fluids needs to be further explored. Aiming at contributing to the implementation of pesticides biomonitoring methods, we mapped the main gaps between screening and chromatographic methods. Our overview focuses on the recent advances (2016-2021) in analytical methods for the determination of commercial pesticides in human biological fluids and provides guidelines for their application.
Collapse
Affiliation(s)
- Francesco Fama
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia, Italy
| | - Matteo Feltracco
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia, Italy
| | - Giulia Moro
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia, Italy.
| | - Elena Barbaro
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia, Italy; Istituto di Scienze Polari (ISP-CNR), Via Torino 155, 30172, Venezia, Italy
| | - Marco Bassanello
- Health Direction Monastier di Treviso Hospital, Via Giovanni XXIII 7, 31050, Treviso, Italy
| | - Andrea Gambaro
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia, Italy; Istituto di Scienze Polari (ISP-CNR), Via Torino 155, 30172, Venezia, Italy.
| | - Chiara Zanardi
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia, Italy; Institute for the Organic Synthesis and Photosynthesis, Research National Council, 40129, Bologna, Italy
| |
Collapse
|
7
|
Esfahani AR, Sadiq Z, Oyewunmi OD, Safiabadi Tali SH, Usen N, Boffito DC, Jahanshahi-Anbuhi S. Portable, stable, and sensitive assay to detect phosphate in water with gold nanoparticles (AuNPs) and dextran tablet. Analyst 2021; 146:3697-3708. [PMID: 33960331 DOI: 10.1039/d0an02063j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A novel and highly sensitive tablet-based colorimetric sensor is developed for the detection of phosphate (Pi) in drinking and surface water using mercaptoacetic acid-capped gold nanoparticles (MA-AuNPs). Characterization of AuNPs and MA-AuNPs was achieved by ultraviolet-visible (UV-Vis) spectroscopy, Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM) and Dynamic light scattering (DLS). The principle of this sensor is based on the aggregation and disaggregation mechanisms of AuNPs that result in a color change from blue to red due to the surface plasmon resonance effect, where europium ions (Eu3+) act as the aggregating agent. Herein, dextran is used to encapsulate the Eu3+ ions into a tablet format to make the detection system user friendly. Hence, the sensor only requires dissolving a Eu3+-dextran tablet into the water sample and subsequently adding MA-AuNPs for the colorimetric quantification of phosphate. This assay is very sensitive with a calculated detection limit of 0.3 μg L-1 and an upper detection limit of 26 μg L-1, while 10 μg L-1 is the allowable limit of Pi in drinking water. A comparative study with a conventional Hach kit confirmed the accuracy of our sensor. Also, real water samples from river, lake, and tap sources were tested to examine the sensor's applicability towards commercialization. The assay did not interfere with common ions in water, thus being Pi-specific, and the performance of the assay was stable for up to at least three weeks. Overall, our new approach provides a simple, stable, rapid, low-cost and promising device for Pi detection in water.
Collapse
Affiliation(s)
- AmirReza R Esfahani
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering, Concordia University, Montréal, QC, Canada. and Department of Mechanical, Industrial, and Aerospace Engineering, Concordia University, Montréal, QC, Canada
| | - Zubi Sadiq
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering, Concordia University, Montréal, QC, Canada.
| | - Oyejide Damilola Oyewunmi
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering, Concordia University, Montréal, QC, Canada.
| | - Seyed Hamid Safiabadi Tali
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering, Concordia University, Montréal, QC, Canada.
| | - Ndifreke Usen
- Department of Chemical Engineering, Polytechnique Montréal, QC, Canada
| | | | - Sana Jahanshahi-Anbuhi
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering, Concordia University, Montréal, QC, Canada.
| |
Collapse
|
8
|
Highly sensitive electrochemical BPA sensor based on titanium nitride-reduced graphene oxide composite and core-shell molecular imprinting particles. Anal Bioanal Chem 2020; 413:1081-1090. [PMID: 33247340 DOI: 10.1007/s00216-020-03069-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/28/2020] [Accepted: 11/13/2020] [Indexed: 12/15/2022]
Abstract
A sensitive electrochemical sensor was proposed via combining molecular imprinting technique with the graphene material-doped titanium nitride. The novel graphene with 3-dimensional structure displayed more binding sites and better electrochemical properties. Moreover, this study focused on coating pyrrole with electrical conductivity on the surface of silica as a monomer, and BPA as the template. The interaction made specific detection possible, between monomer and template. With a series of characterizations and electrochemical measurements, CPE (carbon paste electrode)-contained TiN-rGO composite was proved to have conductivity improved. Also, the modified polymer performed well selectivity which reflected in that it was almost impervious to distractions. Under optimized conditions, a linear dependence was observed from 0.5 to 100 nmol L-1 with a detection limit of 0.19 nmol L-1. The sensor explicated outstanding repeatability via repetitive experiment with the RSD of 0.02%, while the results of stability experiment reached the RSD of 1.90%. Eventually, it was used to analyze BPA residues in 3 kinds of daily supplies. The results indicated the potential of the sensor in environmental detection prospectively.
Collapse
|