1
|
Rizvi A, Murtaza G, Xu X, Gao P, Qiu L, Meng Z. Aptamer-Linked Photonic Crystal Assay for High-Throughput Screening of HIV and SARS-CoV-2. Anal Chem 2023; 95:917-923. [PMID: 36578103 PMCID: PMC9843629 DOI: 10.1021/acs.analchem.2c03467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/13/2022] [Indexed: 12/30/2022]
Abstract
We present a microplate assay for the detection of HIV and SARS-CoV-2 which involves the preadsorption of carboxy-modified polystyrene microspheres to the microplate wells and their self-assembly leading to the formation of a photonic crystal colloidal array (PCCA). PCCA is then cross-linked with amino-modified aptamers selected for viral cell surface glycoproteins, i.e., S1-protein of SARS-CoV-2 and gp120 of the human immunodeficiency virus (HIV), to develop an aptamer-linked photonic crystal assay (ALPA). ALPA is then utilized as a proof-of-concept method for the detection of S1-protein, gp120, and two whole viruses, i.e., SARS-CoV-2 and HIV, as well. The aptamers are stable at room temperature and can bind with the viruses' proteins via hydrogen bonding. This binding leads to color generation from PCCA, and the signal can easily be measured and quantified by a UV/vis spectrometer. The assay carries the advantage of a two-step detection process by the addition of the virus sample directly to a 96-well microplate and incubation of 5 min followed by convenient detection through a UV/vis-spectrometer. The assay does not require any additional reagents and can be customized for similar viruses utilizing specific aptamers targeting their cell surface receptors.
Collapse
Affiliation(s)
- Aysha
Sarfraz Rizvi
- School of Chemistry and Chemical
Engineering, Beijing Institute of Technology Beijing 100081, China
| | - Ghulam Murtaza
- School of Chemistry and Chemical
Engineering, Beijing Institute of Technology Beijing 100081, China
| | - Xu Xu
- School of Chemistry and Chemical
Engineering, Beijing Institute of Technology Beijing 100081, China
| | - Peifeng Gao
- School of Chemistry and Chemical
Engineering, Beijing Institute of Technology Beijing 100081, China
| | - Lili Qiu
- School of Chemistry and Chemical
Engineering, Beijing Institute of Technology Beijing 100081, China
| | - Zihui Meng
- School of Chemistry and Chemical
Engineering, Beijing Institute of Technology Beijing 100081, China
| |
Collapse
|
2
|
A Comprehensive Review of Food Hydrogels: Principles, Formation Mechanisms, Microstructure, and Its Applications. Gels 2022; 9:gels9010001. [PMID: 36661769 PMCID: PMC9858572 DOI: 10.3390/gels9010001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Food hydrogels are effective materials of great interest to scientists because they are safe and beneficial to the environment. Hydrogels are widely used in the food industry due to their three-dimensional crosslinked networks. They have also attracted a considerable amount of attention because they can be used in many different ways in the food industry, for example, as fat replacers, target delivery vehicles, encapsulating agents, etc. Gels-particularly proteins and polysaccharides-have attracted the attention of food scientists due to their excellent biocompatibility, biodegradability, nutritional properties, and edibility. Thus, this review is focused on the nutritional importance, microstructure, mechanical characteristics, and food hydrogel applications of gels. This review also focuses on the structural configuration of hydrogels, which implies future potential applications in the food industry. The findings of this review confirm the application of different plant- and animal-based polysaccharide and protein sources as gelling agents. Gel network structure is improved by incorporating polysaccharides for encapsulation of bioactive compounds. Different hydrogel-based formulations are widely used for the encapsulation of bioactive compounds, food texture perception, risk monitoring, and food packaging applications.
Collapse
|
3
|
Multi-Factors Cooperatively Actuated Photonic Hydrogel Aptasensors for Facile, Label-Free and Colorimetric Detection of Lysozyme. BIOSENSORS 2022; 12:bios12080662. [PMID: 36005058 PMCID: PMC9406194 DOI: 10.3390/bios12080662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022]
Abstract
Responsive two-dimensional photonic crystal (2DPC) hydrogels have been widely used as smart sensing materials for constructing various optical sensors to accurately detect different target analytes. Herein, we report photonic hydrogel aptasensors based on aptamer-functionalized 2DPC poly(acrylamide-acrylic acid-N-tert-butyl acrylamide) hydrogels for facile, label-free and colorimetric detection of lysozyme in human serum. The constructed photonic hydrogel aptasensors undergo shrinkage upon exposure to lysozyme solution through multi-factors cooperative actuation. Here, the specific binding between the aptamer and lysozyme, and the simultaneous interactions between carboxyl anions and N-tert-butyl groups with lysozyme, increase the cross-linking density of the hydrogel, leading to its shrinkage. The aptasensors’ shrinkage decreases the particle spacing of the 2DPC embedded in the hydrogel network. It can be simply monitored by measuring the Debye diffraction ring of the photonic hydrogel aptasensors using a laser pointer and a ruler without needing sophisticated apparatus. The significant shrinkage of the aptasensors can be observed by the naked eye via the hydrogel size and color change. The aptasensors show good sensitivity with a limit of detection of 1.8 nM, high selectivity and anti-interference for the detection of lysozyme. The photonic hydrogel aptasensors have been successfully used to accurately determine the concentration of lysozyme in human serum. Therefore, novel photonic hydrogel aptasensors can be constructed by designing functional monomers and aptamers that can specifically bind target analytes.
Collapse
|
4
|
Yang F, Qiao Q, Cai M, Xia Z, Jiang X. Bupivacaine-loaded hydroxypropyl chitin based sponges prepared via a solvent-free process provide long-acting local anesthesia for postoperative pain. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Vitus V, Ibrahim F, Wan Kamarul Zaman WS. Valorization of Human Hair and Its Derivatives in Tissue Engineering: A Review. Tissue Eng Part C Methods 2022; 28:529-544. [PMID: 35350873 DOI: 10.1089/ten.tec.2021.022333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human hair is a potential biomaterial for biomedical applications. Improper disposal of human hair may pose various adverse effects on the environment and human health. Therefore, proper management of human hair waste is pivotal. Human hair fiber and its derivatives offer various advantages as biomaterials such as biocompatibility, biodegradability, low toxicity, radical scavenging, electroconductivity, and intrinsic biological activity. Therefore, the favorable characteristics of human hair have rendered its usage in tissue engineering (TE) applications including skin, cardiac, nerve, bone, ocular, and periodontal. Moreover, the strategies by utilizing human hair as a biomaterial for TE applications may reduce the accumulation of human hair. Thus, it also improves human hair waste management while promoting natural, environmental-friendly, and nontoxic materials. Furthermore, promoting sustainable materials production will benefit human health and well-being. Hence, this article reviews and discusses human hair characteristics as sustainable biomaterials and their recent application in TE applications. Impact Statement This review article highlights the sustainability aspects of human hair as raw biomaterials and various elements of human hair that could potentially be used in tissue engineering (TE) applications. Furthermore, this article discusses numerous benefits of human hair, highlighting its value as biomaterials in bioscaffold development for TE applications. Moreover, this article reviews the role and effect of human hair in various TE applications, including skin, cardiac, nerve, bone, ocular, and periodontal.
Collapse
Affiliation(s)
- Vieralynda Vitus
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia.,Department of Biomedical Engineering, Faculty of Engineering, Centre for Innovation in Medical Engineering (CIME), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Fatimah Ibrahim
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia.,Department of Biomedical Engineering, Faculty of Engineering, Centre for Innovation in Medical Engineering (CIME), Universiti Malaya, Kuala Lumpur, Malaysia.,Centre for Printable Electronics, Institute for Advanced Studies (IAS), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Wan Safwani Wan Kamarul Zaman
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia.,Department of Biomedical Engineering, Faculty of Engineering, Centre for Innovation in Medical Engineering (CIME), Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Foelen Y, Schenning APHJ. Optical Indicators based on Structural Colored Polymers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200399. [PMID: 35277942 PMCID: PMC9108637 DOI: 10.1002/advs.202200399] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Polymer indicators are autonomous responsive materials that provide an optical signal of a specific exposure in time. This review describes the different polymer systems utilized to obtain indicators based on structural color. Structural color originates from the interaction of light with a periodic nanostructured polymer which causes a specific wavelength to be reflected. This reflected light can be used for fabricating battery-free indicators that show visible structural color changes upon exposure to a stimulus or analyte. In this review, the typical structural color response types categorized by stimulus are discussed and compared. Furthermore, the steps toward possible applications of optical indicators based on structural colored polymers are outlined.
Collapse
Affiliation(s)
- Yari Foelen
- Department of Chemical Engineering and ChemistryEindhoven University of TechnologyDen Dolech 2Eindhoven5600 MBThe Netherlands
- Institute for Complex Molecular SystemsEindhoven University of TechnologyDen Dolech 2Eindhoven5600 MBThe Netherlands
| | - Albert P. H. J. Schenning
- Department of Chemical Engineering and ChemistryEindhoven University of TechnologyDen Dolech 2Eindhoven5600 MBThe Netherlands
- Institute for Complex Molecular SystemsEindhoven University of TechnologyDen Dolech 2Eindhoven5600 MBThe Netherlands
- SCNU‐TUE Joint Laboratory of Device Integrated Responsive Materials (DIRM)South China Normal UniversityGuangzhou Higher Education Mega CenterGuangzhou510006China
| |
Collapse
|
7
|
Tramonti V, Lofrumento C, Martina MR, Lucchesi G, Caminati G. Graphene Oxide/Silver Nanoparticles Platforms for the Detection and Discrimination of Native and Fibrillar Lysozyme: A Combined QCM and SERS Approach. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:600. [PMID: 35214929 PMCID: PMC8878839 DOI: 10.3390/nano12040600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/26/2022] [Accepted: 02/06/2022] [Indexed: 11/17/2022]
Abstract
We propose a sensing platform based on graphene oxide/silver nanoparticles arrays (GO/AgNPs) for the detection and discrimination of the native and toxic fibrillar forms of an amyloid-prone protein, lysozyme, by means of a combination of Quartz Crystal Microbalance (QCM) and Surface Enhanced Raman Scattering (SERS) measurements. The GO/AgNPs layer system was obtained by Langmuir-Blodgett assembly of the silver nanoparticles followed by controlled adsorption of GO sheets on the AgNPs array. The adsorption of native and fibrillar lysozyme was followed by means of QCM, the measurements provided the kinetics and the mechanism of adsorption as a function of protein concentration as well as the mass and thickness of the adsorbed protein on both nanoplatforms. The morphology of the protein layer was characterized by Confocal Laser Scanning Microscopy experiments on Thioflavine T-stained samples. SERS experiments performed on arrays of bare AgNPs and of GO coated AgNP after native, or fibrillar, lysozyme adsorption allowed for the discrimination of the native form and toxic fibrillar structure of lysozyme. Results from combined QCM/SERS studies indicate a general construction paradigm for an efficient sensing platform with high selectivity and low detection limit for native and amyloid lysozyme.
Collapse
Affiliation(s)
| | | | | | | | - Gabriella Caminati
- Department of Chemistry and CSGI, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy; (V.T.); (C.L.); (M.R.M.); (G.L.)
| |
Collapse
|
8
|
Ahmed MA, Erdőssy J, Horvath V. Temperature-Responsive Magnetic Nanoparticles for Bioanalysis of Lysozyme in Urine Samples. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3015. [PMID: 34835779 PMCID: PMC8618479 DOI: 10.3390/nano11113015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 12/26/2022]
Abstract
Highly selective multifunctional magnetic nanoparticles containing a thermoresponsive polymer shell were developed and used in the sample pretreatment of urine for the assessment of lysozymuria in leukemia patients. Crosslinked poly(N-isopropylacrylamide-co-acrylic acid-co-N-tert-butylacrylamide) was grown onto silica-coated magnetic nanoparticles by reversible addition fragmentation chain transfer (RAFT) polymerization. The lysozyme binding property of the nanoparticles was investigated as a function of time, protein concentration, pH, ionic strength and temperature and their selectivity was assessed against other proteins. High-abundant proteins, like human serum albumin and γ-globulins did not interfere with the binding of lysozyme even at elevated concentrations characteristic of proteinuria. A sample cleanup procedure for urine samples has been developed utilizing the thermocontrollable protein binding ability of the nanoparticles. Method validation was carried out according to current bioanalytical method validation guidelines. The method was highly selective, and the calibration was linear in the 25 to 1000 µg/mL concentration range, relevant in the diagnosis of monocytic and myelomonocytic leukemia. Intra- and inter-day precision values ranged from 2.24 to 8.20% and 1.08 to 5.04%, respectively. Intra-day accuracies were between 89.9 and 117.6%, while inter-day accuracies were in the 88.8 to 111.0% range. The average recovery was 94.1 ± 8.1%. Analysis of unknown urine samples in comparison with a well-established reference method revealed very good correlation between the results, indicating that the new nanoparticle-based method has high potential in the diagnosis of lysozymuria.
Collapse
Affiliation(s)
- Marwa A. Ahmed
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; (M.A.A.); (J.E.)
- Department of Chemistry, Faculty of Science, Arish University, El-Arish 45511, Egypt
| | - Júlia Erdőssy
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; (M.A.A.); (J.E.)
| | - Viola Horvath
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; (M.A.A.); (J.E.)
- MTA-BME Computation Driven Chemistry Research Group, H-1111 Budapest, Hungary
| |
Collapse
|
9
|
Cao Y, Liu G, Zheng B, Wang X, Li H, Wang G, Zhao L, Wang Y. A sulfamethoxazole molecularly imprinted two-dimensional photonic crystal hydrogel sensor. SOFT MATTER 2021; 17:4969-4978. [PMID: 33899903 DOI: 10.1039/d1sm00176k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In this paper, a molecularly imprinted two-dimensional photonic crystal hydrogel sensor (SMZ-MIPCH) for the sensitive and label-free recognition of sulfamethoxazole (SMZ) was prepared. The SMZ-MIPCH sensor response performance was investigated via measuring the diameter of the Debye ring (D). When the SMZ-MIPCH sensor recognized SMZ, the diameter of the Debye ring gradually decreased and the particle spacing (d) of the photonic crystals gradually increased. As the SMZ concentration increased from 0 to 10-4 mol L-1, the diameter decreased by 15.2 mm and the corresponding particle spacing increased by 131 nm. As the diffraction peak wavelength of the sensor gradually red-shifted, the color changed from blue to green and finally to orange-red. A good linear relationship was found between the variation of the particle spacing (Δd) and the value of the logarithm of the SMZ concentration (lg c) in the range from 10-16 mol L-1 to 10-10 mol L-1. The limit of detection of the SMZ-MIPCH sensor is 10-16 mol L-1. In the presence of analogues of SMZ, such as sulfisoxazole, sulfadiazine, and sulfamethazine, the diameter changed only slightly, indicating that the SMZ-MIPCH sensor had specific recognition abilities for SMZ. The SMZ-MIPCH sensor has the advantages of high sensitivity, specific recognition, and naked eye detection, and it can be used for the detection of SMZ in water samples.
Collapse
Affiliation(s)
- Yunlei Cao
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China.
| | - Genqi Liu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China.
| | - Bingqing Zheng
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China.
| | - Xinlong Wang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China.
| | - Huanhuan Li
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China.
| | - Gang Wang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China.
| | - Lingli Zhao
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China.
| | - Yue Wang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China.
| |
Collapse
|
10
|
Cao Y, Liu G, Qin X, Li H, Liu C. Preparation and application of 2-chlorophenol molecularly imprinted photonic crystal hydrogel sensor. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2020. [DOI: 10.1080/10601325.2020.1854046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Yunlei Cao
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, P. R. China
| | - Genqi Liu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, P. R. China
| | - Xiatong Qin
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, P. R. China
| | - Huanhuan Li
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, P. R. China
| | - Chenhui Liu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, P. R. China
| |
Collapse
|