1
|
Caño-Carrillo I, Gilbert-López B, Montero L, Martínez-Piernas AB, García-Reyes JF, Molina-Díaz A. Comprehensive and heart-cutting multidimensional liquid chromatography-mass spectrometry and its applications in food analysis. MASS SPECTROMETRY REVIEWS 2024; 43:936-976. [PMID: 37056215 DOI: 10.1002/mas.21845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
In food analysis, conventional one-dimensional liquid chromatography methods sometimes lack sufficient separation power due to the complexity and heterogeneity of the analyzed matrices. Therefore, the use of two-dimensional liquid chromatography (2D-LC) turns out to be a powerful tool to consider, especially when coupled to mass spectrometry (MS). This review presents the most remarkable 2D-LC-MS food applications reported in the last 10 years, including a critical discussion of the multiple approaches, modulation strategies as well as the importance of the optimization of the different analytical aspects that will condition the 2D-LC-MS performance. The presence of contaminants in food (food safety), the food quality, and authenticity or the relationship between the beneficial effects of food and human health are some of the fields in which most of the 2D-LC-MS applications are mainly focused. Both heart-cutting and comprehensive applications are described and discussed in this review, highlighting the potential of 2D-LC-MS for the analysis of such complex samples.
Collapse
Affiliation(s)
- Irene Caño-Carrillo
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Jaén, Spain
| | - Bienvenida Gilbert-López
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Jaén, Spain
- University Research Institute for Olives Grove and Olive Oil, University of Jaén, Jaén, Spain
| | - Lidia Montero
- Institute of Food Science Research-CIAL (CSIC-UAM), Madrid, Spain
| | - Ana B Martínez-Piernas
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Jaén, Spain
| | - Juan F García-Reyes
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Jaén, Spain
- University Research Institute for Olives Grove and Olive Oil, University of Jaén, Jaén, Spain
| | - Antonio Molina-Díaz
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Jaén, Spain
- University Research Institute for Olives Grove and Olive Oil, University of Jaén, Jaén, Spain
| |
Collapse
|
2
|
Yang X, Zeng P, Wen J, Wang C, Yao L, He M. Gain deeper insights into traditional Chinese medicines using multidimensional chromatography combined with chemometric approaches. CHINESE HERBAL MEDICINES 2024; 16:27-41. [PMID: 38375051 PMCID: PMC10874776 DOI: 10.1016/j.chmed.2023.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/30/2023] [Accepted: 07/12/2023] [Indexed: 02/21/2024] Open
Abstract
Traditional Chinese medicines (TCMs) possess a rich historical background, unique theoretical framework, remarkable therapeutic efficacy, and abundant resources. However, the modernization and internationalization of TCMs have faced significant obstacles due to their diverse ingredients and unknown mechanisms. To gain deeper insights into the phytochemicals and ensure the quality control of TCMs, there is an urgent need to enhance analytical techniques. Currently, two-dimensional (2D) chromatography, which incorporates two independent separation mechanisms, demonstrates superior separation capabilities compared to the traditional one-dimensional (1D) separation system when analyzing TCMs samples. Over the past decade, new techniques have been continuously developed to gain actionable insights from complex samples. This review presents the recent advancements in the application of multidimensional chromatography for the quality evaluation of TCMs, encompassing 2D-gas chromatography (GC), 2D-liquid chromatography (LC), as well as emerging three-dimensional (3D)-GC, 3D-LC, and their associated data-processing approaches. These studies highlight the promising potential of multidimensional chromatographic separation for future phytochemical analysis. Nevertheless, the increased separation capability has resulted in higher-order data sets and greater demands for data-processing tools. Considering that multidimensional chromatography is still a relatively nascent research field, further hardware enhancements and the implementation of chemometric methods are necessary to foster its robust development.
Collapse
Affiliation(s)
- Xinyue Yang
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Pingping Zeng
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Jin Wen
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Chuanlin Wang
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Liangyuan Yao
- Hunan Qianjin Xiangjiang Pharmaceutical Joint Stock Co., Ltd., Zhuzhou 412000, China
| | - Min He
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
3
|
Wang L, Wu H, Tang L, Wu T, Chen X, Chen Y, Yue C, Wang Z, Ma Q, Yang H. Chemical composition and absorption characteristics of Angong Niuhuang Pill based on two-dimensional ultra-high-performance liquid chromatography-quadrupole Orbitrap high-resolution mass spectrometry. J Chromatogr A 2023; 1712:464488. [PMID: 37948772 DOI: 10.1016/j.chroma.2023.464488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/18/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Angong Niuhuang Pill (ANP) is a traditional Chinese medicine (TCM) formula with significant clinical efficacy in the treatment of stroke. Due to its complex composition, little attention has been directed toward the analysis of chemical composition and absorption characteristics of ANP. In this study, a reliable two-dimensional ultra-high-performance liquid chromatography (2D-UHPLC) coupled with quadrupole-Orbitrap high-resolution mass spectrometry (Q-Orbitrap HRMS) method was established to characterize the chemical constituents in ANP as well as the prototype components and metabolites absorbed in plasma, urine, feces, and brain tissues after oral administration. The prototype components were identified by a high mass accuracy (within 5 ppm) and MS/MS data based on online, local, and ANP self-built databases. The metabolites were predicted and identified using Compound Discoverer metabolic platform. A total of 154 compounds mainly including 37 flavonoids, 35 alkaioids, 19 organic acid, 19 bile acid, 32 terpenoids and 12 others were identified in this way. In addition, 60 prototype components mainly including flavonoids, alkaioids, organic acid, terpenoids and 164 metabolites were confirmed or preliminarily identified in rats. The metabolic pathways phase I reaction (hydration, reduction, oxidation, demethylation, and hydroxylation) and phase II reaction (acetylation, stearyl conjugation, and methylation) for the absorbed constituents were explored and summarized. This is the first systematic and comprehensive chemical characterization in ANP and its metabolism in vivo by 2D-UHPLC-Q-Orbitrap HRMS. This approach provides an effective strategy for the characterization of compounds and metabolites in traditional Chinese medicine formulas.
Collapse
Affiliation(s)
- Lixia Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongwei Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liying Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Tong Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaoxu Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yingying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chunyu Yue
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhuju Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Qiang Ma
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| | - Hongjun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
4
|
Caño-Carrillo I, Gilbert-López B, Montero L, Martínez-Piernas AB, García-Reyes JF, Molina-Díaz A. Comprehensive and heart-cutting multidimensional liquid chromatography-mass spectrometry and its applications in food analysis. MASS SPECTROMETRY REVIEWS 2023. [PMID: 37010157 DOI: 10.1002/mas.21843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
In food analysis, conventional one-dimensional liquid chromatography methods sometimes lack sufficient separation power due to the complexity and heterogeneity of the analysed matrices. Therefore, the use of two-dimensional liquid chromatography (2D-LC) turns out to be a powerful tool to consider, especially when coupled to mass spectrometry (MS). This review presents the most remarkable 2D-LC-MS food applications reported in the last 10 years, including a critical discussion of the multiple approaches, modulation strategies as well as the importance of the optimisation of the different analytical aspects that will condition the 2D-LC-MS performance. The presence of contaminants in food (food safety), the food quality and authenticity or the relationship between the beneficial effects of food and human health are some of the fields in which most of the 2D-LC-MS applications are mainly focused. Both heart-cutting and comprehensive applications are described and discussed in this review, highlighting the potential of 2D-LC-MS for the analysis of such complex samples.
Collapse
Affiliation(s)
- Irene Caño-Carrillo
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Jaén, Spain
| | - Bienvenida Gilbert-López
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Jaén, Spain
- University Research Institute for Olives Grove and Olive Oil, University of Jaén, Jaén, Spain
| | - Lidia Montero
- Institute of Food Science Research-CIAL (CSIC-UAM), Madrid, Spain
| | - Ana B Martínez-Piernas
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Jaén, Spain
| | - Juan F García-Reyes
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Jaén, Spain
- University Research Institute for Olives Grove and Olive Oil, University of Jaén, Jaén, Spain
| | - Antonio Molina-Díaz
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Jaén, Spain
- University Research Institute for Olives Grove and Olive Oil, University of Jaén, Jaén, Spain
| |
Collapse
|
5
|
da Silva CM, Siciliano B, Dantas G, Arbilla G. An improvement of method TO-15A, aided by heart-cutting multidimensional gas chromatography, for the analysis of C2-C12 hydrocarbons in atmospheric samples. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
6
|
Yu YL, Jin HF, Shi Y, Cao J. Synchronous microextraction of active and toxic compounds from medicinal plant using nano-SiO2 assisted miniaturized matrix solid-phase dispersion. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Fernández AS, Rodríguez-González P, Álvarez L, García M, Iglesias HG, García Alonso JI. Multiple heart-cutting two dimensional liquid chromatography and isotope dilution tandem mass spectrometry for the absolute quantification of proteins in human serum. Anal Chim Acta 2021; 1184:339022. [PMID: 34625263 DOI: 10.1016/j.aca.2021.339022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/28/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
We evaluate here the combination of two-dimensional liquid chromatography (2D-LC) in the multiple heart cutting mode and isotope dilution tandem mass spectrometry for the direct analysis of tryptic digests of serum samples. As a proof of concept, we attempt the quantification of proteotypic peptides of Apolipoprotein AIV (APOA4), Complement C3 (C3) and Vitronectin (VTN) which have been previously identified as potential candidate biomarkers of glaucoma. Using this 2D-LC strategy, analyte enrichment steps are avoided and the sample preparation involved after enzymatic digestion amounted to a simple centrifugation, evaporation of the supernatant and reconstitution in the 1D mobile phase. A mobile phase not compatible with the ESI source (10 mM KH2PO4 at pH 2.7) was used in the first dimension as it provided a satisfactory chromatographic resolution of the peptides and a high buffering capacity avoiding changes in retention times when analyzing complex matrices like human serum. We also demonstrate that using coeluting labelled analogues of the target peptides, protein concentrations were not affected by slight retention time shifts affecting the amount of target peptides transferred to the second dimension. Satisfactory results were obtained when analyzing fortified serum samples (recoveries from 98 to 113%). Precisions in the range of 1-9% RSD were obtained when replicating the analysis of a pooled serum sample. The comparative analysis of serum samples from n = 94 control subjects and n = 91 patients diagnosed with primary open-angle glaucoma did not show significant differences in the APOA4, VTN and C3 concentrations in contrast with previous studies using immunoassays.
Collapse
Affiliation(s)
- Amanda Suárez Fernández
- Department of Physical and Analytical Chemistry, University of Oviedo, Calle Julián Clavería 8, 33006, Oviedo, Spain
| | - Pablo Rodríguez-González
- Department of Physical and Analytical Chemistry, University of Oviedo, Calle Julián Clavería 8, 33006, Oviedo, Spain.
| | - Lydia Álvarez
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012, Oviedo, Spain
| | - Montserrat García
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012, Oviedo, Spain; Instituto Oftalmológico Fernández-Vega, Avda. Dres. Fernández-Vega, 34, 33012, Oviedo, Spain
| | - Héctor González Iglesias
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012, Oviedo, Spain; Instituto Oftalmológico Fernández-Vega, Avda. Dres. Fernández-Vega, 34, 33012, Oviedo, Spain
| | - J Ignacio García Alonso
- Department of Physical and Analytical Chemistry, University of Oviedo, Calle Julián Clavería 8, 33006, Oviedo, Spain
| |
Collapse
|
8
|
Cacciola F, Arena K, Mandolfino F, Donnarumma D, Dugo P, Mondello L. Reversed phase versus hydrophilic interaction liquid chromatography as first dimension of comprehensive two-dimensional liquid chromatography systems for the elucidation of the polyphenolic content of food and natural products. J Chromatogr A 2021; 1645:462129. [PMID: 33864987 DOI: 10.1016/j.chroma.2021.462129] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/19/2022]
Abstract
Comprehensive two-dimensional liquid chromatography is a well-established method for the unraveling of very complex real-world samples. With regard to food and natural products such a technique turned out to be a very promising approach due to its high resolving power and improved identification capability, especially in combination with mass spectrometry. In this context, polyphenols comprise a particular complex class of bioactive compounds, due to their nature and content in commonly consumed foodstuffs, making their analysis challenging. The present contribution shows an overview of the two commonly employed approaches used for polyphenol analysis, viz. RP-LC × RP-LC and HILIC × RP-LC. Furthermore, the latest implementations as well as limitations and future perspectives are critically reported.
Collapse
Affiliation(s)
- Francesco Cacciola
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy.
| | - Katia Arena
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Filippo Mandolfino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Danilo Donnarumma
- Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Paola Dugo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Luigi Mondello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; Department of Sciences and Technologies for Human and Environment, University Campus Bio-Medico of Rome, 00128 Rome, Italy; BeSep s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| |
Collapse
|