1
|
Hao J, Yang K, Wu J, Wu M, Li Y. Overview of Recent Developments in Composite Epoxy Resin in Organic Coating on Steel (2020-2024). MATERIALS (BASEL, SWITZERLAND) 2025; 18:1531. [PMID: 40271738 PMCID: PMC11990607 DOI: 10.3390/ma18071531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/25/2025]
Abstract
Epoxy resin, widely recognized for its excellent performance, is extensively applied in the anti-corrosion field of steel. Continuous enhancement of the anti-corrosion performance of epoxy resins to satisfy more stringent requirements has become a current hot topic of interest in both scientific and industrial circles. This review focuses on recent advancements in composite epoxy resin coatings for steel from 2020 to 2024, emphasizing improvements in anti-corrosion performance through various additive modifications. Modification methods are categorized into metal-based compounds, organic compounds, organometallic compounds, and carbon-based materials. To assist scholars in understanding the latest research advancements, key findings from electrochemical tests, mechanical assessments, and structural characterizations are summarized, highlighting their influence on corrosion resistance, adhesion, mechanical properties, and self-healing capabilities.
Collapse
Affiliation(s)
- Jianghua Hao
- Chemical Pollution Control Chongqing Applied Technology Extension Center of Higher Vocational Colleges, Chongqing Industry Polytechnic College, Chongqing 401120, China; (J.H.); (K.Y.); (J.W.)
- Avic Xi’an Aircraft Industry Group Co., Ltd., Xi’an 710089, China
| | - Kun Yang
- Chemical Pollution Control Chongqing Applied Technology Extension Center of Higher Vocational Colleges, Chongqing Industry Polytechnic College, Chongqing 401120, China; (J.H.); (K.Y.); (J.W.)
- Avic Shenyang Aircraft Corporation, Shenyang 110086, China
| | - Jiaye Wu
- Chemical Pollution Control Chongqing Applied Technology Extension Center of Higher Vocational Colleges, Chongqing Industry Polytechnic College, Chongqing 401120, China; (J.H.); (K.Y.); (J.W.)
| | - Mingzhu Wu
- Chemical Pollution Control Chongqing Applied Technology Extension Center of Higher Vocational Colleges, Chongqing Industry Polytechnic College, Chongqing 401120, China; (J.H.); (K.Y.); (J.W.)
| | - Ying Li
- Chemical Pollution Control Chongqing Applied Technology Extension Center of Higher Vocational Colleges, Chongqing Industry Polytechnic College, Chongqing 401120, China; (J.H.); (K.Y.); (J.W.)
| |
Collapse
|
2
|
Abd El-Lateef HM, Khalaf MM, Gouda M, Yousef TA, Kenawy SH, Abou-Krisha MM, Alaasar M, Shaaban S. Corrosion mitigation characteristics of some novel organoselenium thiourea derivatives for acid pickling of C1018 steel via experimental and theoretical study. Sci Rep 2023; 13:9058. [PMID: 37270645 PMCID: PMC10239482 DOI: 10.1038/s41598-023-36222-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023] Open
Abstract
Two organoselenium thiourea derivatives, 1-(4-(methylselanyl)phenyl)-3-phenylthiourea (DS036) and 1-(4-(benzylselanyl)phenyl)-3-phenylthiourea (DS038) were produced and categorized using FTIR and NMR (1H and 13C). The effectiveness of the above two compounds as C-steel corrosion inhibitors in molar HCl was evaluated using the potentiodynamic polarization (PD) and electrochemical impedance spectroscopy (EIS) techniques. PD findings indicate that DS036 and DS038 have mixed-type features. EIS results show that growing their dose not only changes the polarization resistance of C-steel from 18.53 to 363.64 and 463.15 Ω cm2 but also alters the double layer capacitance from 710.9 to 49.7 and 20.5 μF cm-2 in the occurrence of 1.0 mM of DS036 and DS038, respectively. At a 1.0 mM dose, the organoselenium thiourea derivatives displayed the highest inhibition efficiency of 96.65% and 98.54%. The inhibitory molecule adsorption proceeded along the Langmuir isotherm on the steel substrate. The adsorption-free energy of the adsorption process was also intended and indicated a combined chemical and physical adsorption on the C-steel interface. FE-SEM studies support the adsorption and protective abilities of the OSe-based molecule inhibitor systems. In Silico calculations (DFT and MC simulations) explored the attraction between the studied organoselenium thiourea derivatives and corrosive solution anions on a Fe (110) surface. The obtained results show that these compounds can make a suitable preventing surface and control the corrosion rate.
Collapse
Affiliation(s)
- Hany M Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University, 31982, Al-Hasa, Saudi Arabia.
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, 82524, Egypt.
| | - Mai M Khalaf
- Department of Chemistry, College of Science, King Faisal University, 31982, Al-Hasa, Saudi Arabia
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Mohamed Gouda
- Department of Chemistry, College of Science, King Faisal University, 31982, Al-Hasa, Saudi Arabia
| | - T A Yousef
- College of Science, Chemistry Department, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Kingdom of Saudi Arabia
- Department of Toxic and Narcotic Drug, Forensic Medicine, Mansoura Laboratory, Medicolegal Organization, Ministry of Justice, Mansoura, Egypt
| | - Sayed H Kenawy
- College of Science, Chemistry Department, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Kingdom of Saudi Arabia
- Refractories, Ceramics and Building Materials Department, National Research Centre, El-Buhouth St., Dokki, Giza, 12622, Egypt
| | - Mortaga M Abou-Krisha
- College of Science, Chemistry Department, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Kingdom of Saudi Arabia
- Department of Chemistry, South Valley University, Qena, 83523, Egypt
| | - Mohamed Alaasar
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Halle, Germany
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Saad Shaaban
- Department of Chemistry, College of Science, King Faisal University, 31982, Al-Hasa, Saudi Arabia.
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
3
|
Aleithan SH, Al-Amer K, Alabbad ZH, Khalaf MM, Alam K, Alhashem Z, Abd El-Lateef HM. Highly scalable synthesis of MoS2 thin films for carbon steel coatings: influence of synthetic route on the nanostructure and corrosion performance. JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY 2023; 23:1239-1251. [DOI: 10.1016/j.jmrt.2023.01.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
4
|
Abd El-Lateef HM, Khalaf MM, Gouda M, Shalabi K, El‑Taib Heakal F, Al-Janabi AS, Shaaban S. Novel water-soluble organoselenocyanates and symmetrical diselenides tethered N-succinanilate and N-maleanilate as corrosion inhibitors for reinforced steel in the simulated concrete pore solution. CONSTRUCTION AND BUILDING MATERIALS 2023; 366:130135. [DOI: 10.1016/j.conbuildmat.2022.130135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
5
|
Al-Masoud MA, Khalaf MM, Heakal FET, Gouda M, Mohamed IMA, Shalabi K, El-Lateef HMA. Advanced Protective Films Based on Binary ZnO-NiO@polyaniline Nanocomposite for Acidic Chloride Steel Corrosion: An Integrated Study of Theoretical and Practical Investigations. Polymers (Basel) 2022; 14:4734. [PMID: 36365727 PMCID: PMC9658172 DOI: 10.3390/polym14214734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/25/2022] [Accepted: 11/01/2022] [Indexed: 09/02/2023] Open
Abstract
Due to their thermal stability characteristics, polymer/composite materials have typically been employed as corrosion inhibitors in a variety of industries, including the maritime, oil, and engineering sectors. Herein, protective films based on binary ZnO-NiO@polyaniline (ZnNiO@PANE) nanocomposite were intended with a respectable yield. The produced nanocomposite was described using a variety of spectroscopic characterization methods, including dynamic light scattering (DLS), ultraviolet-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) approaches, in addition to other physicochemical methods, including X-ray powder diffraction (XRD), transmission Electron Microscopy (TEM), field emission scanning electron microscopy (FESEM), and selected area electron diffraction (SAED). By using open-circuit potentials (OCP) vs. time, electrochemical impedance spectroscopic (EIS), and potentiodynamic polarization (PDP) methods, the inhibitory effects of individual PANE and ZnNiO@PANE on the mild steel alloy corrosion in HCl/NaCl solution were assessed. The ZnNiO@PANE composite performed as mixed-type inhibitors, according to PDP findings. PANE polymer and ZnNiO@PANE composite at an optimal dose of 200 mg/L each produced protective abilities of 84.64% and 97.89%, respectively. The Langmuir isotherm model is used to explain the adsorption of ZnNiO@PANE onto MS alloy. DFT calculations showed that the prepared materials' efficiency accurately reflects their ability to contribute electrons, whereas Monte Carlo (MC) simulations showed that the suitability and extent of adsorption of the ZnNiO@PANE molecule at the metal interface determine the materials' corrosion protection process.
Collapse
Affiliation(s)
- May Ahmed Al-Masoud
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mai M. Khalaf
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Chemistry, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | | | - Mohamed Gouda
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | | | - Kamal Shalabi
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdul-Aziz University, Al-Kharj 11942, Saudi Arabia
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura 11432, Egypt
| | - Hany M. Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Chemistry, Faculty of Science, Sohag University, Sohag 82524, Egypt
| |
Collapse
|
6
|
Computational, kinetic, and electrochemical studies of polyaniline functionalized ZnO and ZnO-SiO2 nanoparticles as corrosion protection films on carbon steel in acidic sodium chloride solutions. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.05.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Gouda M, Khalaf MM, Al-Shuaibi MAA, Mohamed IMA, Shalabi K, El-Shishtawy RM, El-Lateef HMA. Facile Synthesis and Characterization of CeO2-Nanoparticle-Loaded Carboxymethyl Cellulose as Efficient Protective Films for Mild Steel: A Comparative Study of Experiential and Computational Findings. Polymers (Basel) 2022; 14:polym14153078. [PMID: 35956592 PMCID: PMC9370439 DOI: 10.3390/polym14153078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 01/27/2023] Open
Abstract
Corrosion is considered to be the most severe problem facing alloys and metals, one that causes potentially dangerous industrial issues such as the deterioration of buildings and machinery, and corrosion in factory tanks and pipelines in petroleum refineries, leading to limited lifetime and weak efficacy of such systems. In this work, novel CeO2-nanoparticle-loaded carboxymethyl cellulose (CMC) was successfully prepared by using a simple method. The structural configuration of the prepared CeO2-nanoparticle-loaded CMC was investigated by FE-SEM/EDX, TEM, FT-IR, and thermal analyses. The corrosion protection proficiency of uncoated and coated mild steel with CeO2-CMC systems in 1.0 M HCl solutions was studied by EOCP-time, EIS, and PDP tools. Moreover, the relationship between the structure of coating films and their corrosion protection was confirmed by DFT calculation and MC simulation. The obtained findings from the studied methods showed that the prepared CeO2-CMC-coated films reported high corrosion resistance. The protection capacity augmented with ceria presents an increase of up to 3% to achieve 98.4%. DFT calculation and MC simulation confirmed the influence of the chemical construction of coated films on its protection capacity, which was in accordance with the experimental results.
Collapse
Affiliation(s)
- Mohamed Gouda
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.M.K.); (M.A.A.A.-S.)
- Correspondence: (M.G.); (I.M.A.M.); (R.M.E.-S.); (H.M.A.E.-L.)
| | - Mai M. Khalaf
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.M.K.); (M.A.A.A.-S.)
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Manal A. A. Al-Shuaibi
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.M.K.); (M.A.A.A.-S.)
| | - Ibrahim M. A. Mohamed
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
- Correspondence: (M.G.); (I.M.A.M.); (R.M.E.-S.); (H.M.A.E.-L.)
| | - Kamal Shalabi
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Reda M. El-Shishtawy
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21413, Saudi Arabia
- Dyeing, Printing and Textile Auxiliaries Department, Institute of Textile Research and Technology, National Research Centre, 33 EL Buhouth St., Dokki, Giza 12622, Egypt
- Correspondence: (M.G.); (I.M.A.M.); (R.M.E.-S.); (H.M.A.E.-L.)
| | - Hany M. Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.M.K.); (M.A.A.A.-S.)
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
- Correspondence: (M.G.); (I.M.A.M.); (R.M.E.-S.); (H.M.A.E.-L.)
| |
Collapse
|
8
|
Experimental and In-Silico Computational Modeling of Cerium Oxide Nanoparticles Functionalized by Gelatin as an Eco-Friendly Anti-Corrosion Barrier on X60 Steel Alloys in Acidic Environments. Polymers (Basel) 2022; 14:polym14132544. [PMID: 35808589 PMCID: PMC9269000 DOI: 10.3390/polym14132544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/12/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
An eco-friendly and a facile route successfully prepared novel cerium oxide nanoparticles functionalized by gelatin. The introduced CeO2@gelatin was investigated in terms of FE-SEM, EDX, TEM, chemical mapping, FT-IR, and (TGA) thermal analyses. These characterization tools indicate the successful synthesis of a material having CeO2 and gelatin as a composite material. The prepared composite CeO2@gelatin was used as an environment-friendly coated film or X60 steel alloys in acidizing oil well medium. Moreover, the effect of CeO2 percent on film composition was investigated. LPR corrosion rate, Eocp-time, EIS, and PDP tools determined the corrosion protection capacity. The CeO2@gelatin composite exhibited high protection capacity compared to pure gelatin; in particular, 5.0% CeO2@gelatin coating film shows the highest protection capacity (98.2%), with long-term anti-corrosive features. The % CeO2@gelatin-coated films formed the protective adsorbed layer on the steel interface by developing a strong bond among nitrogen atoms in the CeO2@gelatin film and the electrode interface. Surface morphology using FESEM measurements confirmed the high efficiency of the fabricated CeO2@gelatin composite on the protection X60 steel alloys. DFT calculations and MC simulations were explored to study the relations between the protection action and the molecular construction of the coated systems, which were in good alignment with the empirical findings.
Collapse
|
9
|
Abd El-Lateef HM, Gouda M, Shalabi K, Al-Omair MA, Khalaf MM. Superhydrophobic films-based nonanyl carboxy methylcellulose grafted polyacrylamide for AISI-stainless steel corrosion protection: Empirical explorations and computational models. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
o-Toluidine in electrochemistry – an overview. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05128-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractThe substituted aromatic amine o-toluidine (2-methylaniline, 1-amino-2-methylbenzene) is frequently encountered in electrochemical research as a soluble corrosion inhibitor dissolved in aqueous media used e.g., in cooling systems, as a homomonomer for formation of intrinsically conducting poly-o-toluidine and as a comonomer in formation of respective copolymers and their composites. The obtained polymers are suggested as corrosion protection coatings, as active materials in devices for electrochemical energy storage, but more frequently, they are examined as active components in electrochemical sensors.The significant and pronounced carcinogenicity of o-toluidine has hardly been addressed; presumably, most researchers are not even aware of this property. After a brief summary of the health risks and effects, the following overview presents typical examples of said studies and applications. If possible, substitutes with lower health risks are proposed, at least further studies enabling such replacement are suggested.
Collapse
|
11
|
Abd El-Lateef HM, Alnajjar AO, Khalaf MM. Advanced self-healing coatings based on ZnO, TiO2, and ZnO-TiO2/polyvinyl chloride nanocomposite systems for corrosion protection of carbon steel in acidic solutions containing chloride. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.11.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|