1
|
Sarsenbayeva A, Sadak S, Kucuk I, Kudreyeva L, Bakytzhanovna AM, Uslu B. Molybdenum-Based Electrochemical Sensors for Breast Cancer Biomarker Detection: Advances and Challenges. Crit Rev Anal Chem 2025:1-21. [PMID: 40257753 DOI: 10.1080/10408347.2025.2487581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Breast cancer, which is considered the most common type of cancer among women worldwide, is estimated to reach 4.4 million cases in 2070. Early diagnosis has become very important to prevent this expected increase. Various traditional methods, such as mammography, biopsy, enzyme immunoassay (EI), liquid biopsy, immunohistochemistry (IGH), fluorescence in situ hybridization (FISH) are used to diagnose breast cancer, but the fact that these methods are very expensive, have low sensitivity, and cause mutations in tissues due to X-rays has led researchers to discover faster, more cost-effective, and easily detectable methods. In particular, increased levels of new blood-based biomarkers in the circulation can be detected sensitively and selectively by electrochemical methods to facilitate early disease screening and rapid diagnosis. This comprehensive review focuses on the prevalence and pathology of breast cancer, clinical diagnosis of breast cancer, and electrochemical sensors of molybdenum-based compounds for the detection of various breast cancer biomarkers in recent years. Electrochemical analysis studies carried out in the field in recent years are compiled and are considered as aptamer-based, nucleotide-based, and immunosensors. The chemical properties of molybdenum compounds are discussed, and the modifications of these compounds to the electrode surface are discussed under 4 headings: drop casting, electrodeposition, atomic layer deposition, and electrophoretic deposition.
Collapse
Affiliation(s)
- Aliya Sarsenbayeva
- Department of Analytical Chemistry, Colloidal Chemistry and Technology of Rare Elements, Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Selenay Sadak
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
- The Graduate School of Health Sciences, Ankara University, Ankara, Turkey
| | - Ipek Kucuk
- The Graduate School of Health Sciences, Ankara University, Ankara, Turkey
- Department of Analytical Chemistry, Faculty of Pharmacy, Başkent University, Ankara, Turkey
| | - Leila Kudreyeva
- Department of Analytical Chemistry, Colloidal Chemistry and Technology of Rare Elements, Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Abu Moldir Bakytzhanovna
- Department of Analytical Chemistry, Colloidal Chemistry and Technology of Rare Elements, Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Bengi Uslu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
2
|
Yadav SK, Yadav AK, Kaushik A, Solanki PR. Functionalized graphitic carbon nitride as an efficient electro-analytical platform for the label-free electrochemical sensing of interleukin-8 in saliva samples. NANOSCALE 2025; 17:7926-7944. [PMID: 40017315 DOI: 10.1039/d4nr02039a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
A correlation between the emerging high case fatality rate of head and neck cancer and its propensity to migrate metastatically to other parts of the body makes it a significant global danger. It raises the demand for low-level detection, which is useful for early-stage diagnostics. Graphitic carbon nitride (g-C3N4) has recently garnered considerable attention as a promising nanomaterials for biosensor due to its exceptional redox behavior, electrochemical activity, and abundance of electroactive sites. The current study presents research outcomes regarding the development of an ultra-sensitive platform for detecting interleukin-8 (IL8), a cytokine associated with oral cancer. This investigation involves fabricating the platform using 3-aminopropyl trimethoxysilane (APTES)-functionalized g-C3N4 and assessing its efficacy in both laboratory-made and real samples. The process of g-C3N4 synthesis involved the thermal pyrolysis of urea without any add-on material. Moreover, the APTES@g-C3N4 nanomaterial was subjected to electrophoretic deposition onto an ITO-coated glass electrode. The fabricated APTES@g-C3N4/ITO electrode was covalently immobilized by the EDC and NHS chemical reaction in conjunction with anti-interleukin-8 (anti-IL8) antibodies. Before using these sensors for interleukin-8 (IL8) sensing, the anti-IL8/APTES@g-C3N4/ITO electrode was treated with bovine serum albumin (BSA) molecules utilized to obstruct non-targeted areas. Such a fabricated BSA/anti-IL8/APTES@g-C3N4/ITO electrochemical immunosensing bioelectrode was characterized by various analytical, morphological, and electrochemical techniques to confirm the stepwise fabrication of the sensor. BSA/anti-IL8/APTES@g-C3N4/ITO demonstrates a noticeable DPV based electrochemical response as a function of IL8 in the concentration ranging from 500 fg mL-1 to 160 ng mL-1. This BSA/anti-IL8/APTES@g-C3N4/ITO also exhibits a lower limit of detection (LOD) of 0.04 ng mL-1, a sensitivity of 0.015 mA log10 [ng mL-1] cm-2, and stability for up to 10 weeks. The biosensor demonstrates excellent performance in analyzing real samples, indicating its practical utility. This efficacy can be attributed to the abundance of electroactive sites, confined electronic structures, and strong interactions among the active g-C3N4 matrix, anti-IL8 molecules, and IL8 molecules. Our findings are essential for advancing early and point-of-care diagnostics, where quick turnaround times and great sensitivity are critical.
Collapse
Affiliation(s)
- Sumit K Yadav
- NanoBio Laboratory, Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi-110067, India.
- University Department of Biotechnology, Vinoba Bhave University, Hazaribagh, Jharkhand 825301, India
| | - Amit K Yadav
- NanoBio Laboratory, Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland 33805, FL, USA
| | - Pratima R Solanki
- NanoBio Laboratory, Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi-110067, India.
| |
Collapse
|
3
|
Gopal N, Chauhan N, Jain U, Dass SK, Chandra R. Nanomaterial Modified Screen Printed Electrode Based Electrochemical Genosensor for Efficient Detection of Neonatal Sepsis. Indian J Microbiol 2025; 65:515-528. [PMID: 40371025 PMCID: PMC12069212 DOI: 10.1007/s12088-024-01348-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/23/2024] [Indexed: 05/16/2025] Open
Abstract
The present work reports fabrication of nanomaterial based electrochemical genosensor for efficient detection of neonatal sepsis. For this purpose, virulent cfb gene of its major causative organisms, i.e. Group B Streptococcus (GBS) was selected. Further, a cfb specific 19-mer long amine terminated DNA probe was designed to be used as bioreceptor. The genosensing platform is fabricated by utilizing graphene oxide as nanomaterial which is deposited onto screen printed electrode (SPE) by electrophoretic deposition technique. Thereafter, the designed probe DNA is immobilized on graphene oxide modified SPE through EDC-NHS chemistry. Characterization of nanomaterial and fabricated genosensing platform is studied via X-ray diffraction, Scanning electron microscopy, atomic force microscopy, Fourier transmission infrared spectroscopy and cyclic voltammetry techniques. The fabricated genosensor (BSA/pDNA/GO/SPE) is able to efficiently detect target cfb gene with a linear detection range of 10-12-10-7 M, lower detection limit of 10-12 M and sensitivity of 725.9 µA M-1 cm-2. The biosensing ability of developed genosenor is also investigated in artificial serum sample and the obtained results are found within acceptable percentage relative standard deviation (%RSD), indicating its application in detecting neonatal sepsis in serum samples. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-024-01348-w.
Collapse
Affiliation(s)
- Neha Gopal
- Drug Discovery and Development Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007 India
- Maharaja Surajmal Brij University, Bharatpur, Rajasthan 321201 India
| | - Nidhi Chauhan
- School of Health Sciences and Technology, UPES, Dehradun, Uttarakhand 248007 India
| | - Utkarsh Jain
- School of Health Sciences and Technology, UPES, Dehradun, Uttarakhand 248007 India
| | - Sujata K. Dass
- Department of Neurology, BLK Super Speciality Hospital, New Delhi, 110005 India
| | - Ramesh Chandra
- Drug Discovery and Development Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007 India
- Institute of Nano Medical Sciences, University of Delhi, Delhi, 110007 India
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007 India
- Maharaja Surajmal Brij University, Bharatpur, Rajasthan 321201 India
| |
Collapse
|
4
|
Augustine S, Chinnamani MV, Mun CW, Shin JY, Trung TQ, Hong SJ, Huyen LTN, Lee EH, Lee SH, Rha JJ, Jung S, Lee Y, Park SG, Lee NE. Metal-enhanced fluorescence biosensor integrated in capillary flow-driven microfluidic cartridge for highly sensitive immunoassays. Biosens Bioelectron 2024; 248:115987. [PMID: 38176256 DOI: 10.1016/j.bios.2023.115987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/17/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Point-of-care testing (POCT) for low-concentration protein biomarkers remains challenging due to limitations in biosensor sensitivity and platform integration. This study addresses this gap by presenting a novel approach that integrates a metal-enhanced fluorescence (MEF) biosensor within a capillary flow-driven microfluidic cartridge (CFMC) for the ultrasensitive detection of the Parkinson's disease biomarker, aminoacyl-tRNA synthetase complex interacting multi-functional protein 2 (AIMP-2). Crucial point to this approach is the orientation-controlled immobilization of capture antibody on a nanodimple-structured MEF substrate within the CFMC. This strategy significantly enhances fluorescence signals without quenching, enabling accurate quantification of low-concentration AIMP-2 using a simple digital fluorescence microscope with a light-emitting diode excitation source and a digital camera. The resulting platform exhibits exceptional sensitivity, achieving a limit of detection in the pg/mL range for AIMP-2 in human serum. Additionally, the CFMC design incorporates a capillary-driven passive sample transport mechanism, eliminating the need for external pumps and further simplifying the detection process. Overall, this work demonstrates the successful integration of MEF biosensing with capillary microfluidics for point-of-care applications.
Collapse
Affiliation(s)
- Shine Augustine
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Mottour Vinayagam Chinnamani
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Chae Won Mun
- Nano-Bio Convergence Department, Korea Institute of Materials Science (KIMS), Changwon, 51508, Republic of Korea
| | - Jeong-Yong Shin
- Division of Pharmacology, Department of Molecular Cell Biology, Samsung, Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Tran Quang Trung
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Seok Ju Hong
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Lai Thi Ngoc Huyen
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Eung Hyuk Lee
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Soo Hyun Lee
- Nano-Bio Convergence Department, Korea Institute of Materials Science (KIMS), Changwon, 51508, Republic of Korea
| | - Jong-Joo Rha
- Nano-Bio Convergence Department, Korea Institute of Materials Science (KIMS), Changwon, 51508, Republic of Korea
| | - Sunghoon Jung
- Nano-Bio Convergence Department, Korea Institute of Materials Science (KIMS), Changwon, 51508, Republic of Korea
| | - Yunjong Lee
- Division of Pharmacology, Department of Molecular Cell Biology, Samsung, Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Sung-Gyu Park
- Nano-Bio Convergence Department, Korea Institute of Materials Science (KIMS), Changwon, 51508, Republic of Korea.
| | - Nae-Eung Lee
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea; SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea; Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea; Institute of Quantum Biophysics (IQB), Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwa n University, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
5
|
Gopal N, Chauhan N, Jain U, Dass SK, Kumar S, Chandra R. Designing of a unique bioreceptor and fabrication of an efficient genosensing platform for neonatal sepsis detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4066-4076. [PMID: 37551420 DOI: 10.1039/d3ay00567d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
We report the results of studies related to the fabrication of a nanostructured graphene oxide (GO)-based electrochemical genosensor for neonatal sepsis detection. Initially, we selected the fimA gene of E. coli for nenonatal sepsis detection and further designed a 20-mer long amine-terminated oligonucleotide. This designed oligonucleotide will work as a bioreceptor for the detection of the virulent fimA gene. An electrochemical genosensor was further developed where GO was used as an immobilization matrix. For the formation of a thin film of GO on an indium tin oxide (ITO)-coated glass electrode, an optimized DC potential of 10 V for 90 s was applied via an electrophoretic deposition unit. Thereafter, the designed oligonucleotides were immobilized through EDC-NHS chemistry. The nanomaterial and fabricated electrodes were characterized via X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy and cyclic voltammetry techniques. The fabricated genosensor (BSA/pDNA/GO/ITO) has the ability to detect the target fimA gene with a linear detection range of 10-12 M to 10-6 M, a lower detection limit of 10-12 M and a sensitivity of 114.7 μA M-1 cm-2. We also investigated the biosensing ability of the developed genosensor in an artificial serum sample and the obtained electrochemical results were within the acceptable percentage relative standard deviation (% RSD), indicating that the fabricated genosensor can be used for the detection of neonatal sepsis by using a serum sample.
Collapse
Affiliation(s)
- Neha Gopal
- Drug Discovery and Development Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Nidhi Chauhan
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India
| | - Utkarsh Jain
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India
| | - Sujata K Dass
- Department of Neurology, BLK Super Speciality Hospital, New Delhi-110005, India
| | - Suveen Kumar
- Drug Discovery and Development Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Ramesh Chandra
- Drug Discovery and Development Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
- Institute of Nano Medical Sciences, University of Delhi, Delhi-110007, India
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi-110007, India
- Maharaja Surajmal Brij University, Bharatpur, Rajasthan-321201, India
| |
Collapse
|
6
|
Shankar S, Kumar Y, Chauhan D, Tiwari P, Sharma N, Chandra R, Kumar S. Nanodot Zirconium Trisulfide based Highly Efficient Biosensor for Early Diagnosis of Lung Cancer. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
7
|
Gold nanostar and graphitic carbon nitride nanocomposite for serotonin detection in biological fluids and human embryonic kidney cell microenvironment. Mikrochim Acta 2023; 190:45. [PMID: 36602584 DOI: 10.1007/s00604-022-05612-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/01/2022] [Indexed: 01/06/2023]
Abstract
A nanosensor comprising of gold nanostars (Au-Nstars)-graphitic carbon nitride (g-C3N4) nanocomposite layered on a glassy carbon electrode (GCE) to detect serotonin (ST) in various body fluids has been fabricated. The nanocomposite and the sensing platform have been thoroughly characterized with UV-visible spectroscopy (UV-vis), transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy dispersive X-ray photoelectron spectroscopy (EDX), and electrochemical techniques such as cyclic voltammetry (CV), linear sweep voltammetry (LSV), and electrochemical impedance spectroscopy (EIS). The designed ST detection probe has achieved a linear dynamic range (LDR) in the range 5 × 10-7 and 1 × 10-3 M with a limit of detection (LOD) of 15.1 nM (RSD < 3.3%). The ST detection capability of the fabricated sensor ranges between the normal and several abnormal pathophysiological situations. The sensor effectively detects ST in real matrices such as urine and blood serum, thus, showing its direct diagnostic applicability. Additionally, the sensor has been tested in the microenvironment of human embryonic kidney (HEK) cells to assess the possibility of ST secretion in cell lines. Interferences because of co-existing molecules have been evaluated, and the shelf-life of the fabricated sensor has been obtained as 8 weeks.
Collapse
|
8
|
Du Z, Wang C, Chen Y, Guo Q, Zhang K, Di Y, Li X. The effect of carrier microstructure on bioactivities of covalently bound osteogenic-related peptides in vivo. MATERIALS & DESIGN 2022; 224:111301. [DOI: 10.1016/j.matdes.2022.111301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
|
9
|
Qiu R, Mu W, Wu C, Wu M, Feng J, Rong S, Ma H, Chang D, Pan H. Sandwich-type immunosensor based on COF-LZU1 as the substrate platform and graphene framework supported nanosilver as probe for CA125 detection. J Immunol Methods 2022; 504:113261. [DOI: 10.1016/j.jim.2022.113261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 10/18/2022]
|
10
|
Zhou T, Li M, Li N, Dong Y, Liu D, Hu X, Xie Z, Qu D, Li X, Zhang C. Ultrasensitive electrochemical sensor for mercury ion detection based on molybdenum selenide and Au nanoparticles via thymine-Hg 2+-thymine coordination. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:278-285. [PMID: 34985058 DOI: 10.1039/d1ay01750k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An ultrasensitive and specific-selection electrochemical sensor was constructed for Hg2+ detection based on Au nanoparticles and molybdenum selenide (Au NPs@MoSe2) as well as the thymine-Hg2+-thymine (T-Hg2+-T) coordination. Herein, Au NPs@MoSe2 not only could improve the sensitivity due to the large surface area and good electrical conductivity but also offered more sites to immobilize thiol-labeled T-rich hairpin DNA probes (P-1), which has a specific recognition for Hg2+ and methylene blue-labeled T-rich DNA probes (MB-P). When Hg2+ and MB-P exist, P-1 and MB-P can form a stable T-Hg2+-T complex. Then, methylene blue can be close to the electrode and detectable via differential pulse voltammetry (DPV). Benefiting from the specific recognition of T-Hg2+-T and the merits of Au NPs and MoSe2, the fabricated biosensor presented an ultrasensitive and highly selective performance. The DPV responses had a positive linear relationship with Hg2+ concentrations over ten orders of magnitude from 1.0 × 10-16 to 1.0 × 10-7 mol L-1. The detection limit was down to 1.1 × 10-17 mol L-1. Moreover, the developed sensor exhibited a promising application for trace Hg2+determination in water samples.
Collapse
Affiliation(s)
- Ting Zhou
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Meijuan Li
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Na Li
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Yulin Dong
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Dan Liu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China.
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, China
| | - Xiaosong Hu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Zhizhong Xie
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Deyu Qu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Xi Li
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Chaocan Zhang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China.
| |
Collapse
|
11
|
Jain R, Nirbhaya V, Chandra R, Kumar S. Nanostructured Mesoporous Carbon Based Electrochemical Biosensor for Efficient Detection of Swine Flu. ELECTROANAL 2022. [DOI: 10.1002/elan.202100242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Raghav Jain
- Department of Chemistry University of Delhi Delhi 110007 India
| | | | - Ramesh Chandra
- Department of Chemistry University of Delhi Delhi 110007 India
| | - Suveen Kumar
- Department of Chemistry University of Delhi Delhi 110007 India
| |
Collapse
|
12
|
Nirbhaya V, Chaudhary C, Chauhan D, Chandra R, Kumar S. Multiwalled carbon nanotube nanofiller-polyindole polymer matrix-based efficient biosensor for the rapid detection of swine flu. NEW J CHEM 2022. [DOI: 10.1039/d1nj06173a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Pictorial representation of the synthesis of the electrode material, fabrication and electrochemical response of the biosensing platform for swine flu detection.
Collapse
Affiliation(s)
| | - Chhaya Chaudhary
- Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Dipti Chauhan
- Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Ramesh Chandra
- Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Suveen Kumar
- Department of Chemistry, University of Delhi, Delhi-110007, India
| |
Collapse
|
13
|
Moslah M, Fredj Z, Dridi C. Development of a new highly sensitive serotonin sensor based on green synthesized silver nanoparticle decorated reduced graphene oxide. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5187-5194. [PMID: 34672314 DOI: 10.1039/d1ay01532j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electrochemical detection of serotonin (5-hydroxytryptamine, 5-HT) is proposed for the first time using a cost-effective and eco-friendly nanocomposite of AgNPs and rGO which is synthesized through an in situ green reduction process using rosemary leaf extract. The synthesized nanocomposite and the elaborate thin layers have been characterized using UV-Vis, FTIR, TEM, and EIS. The sensitivity of the developed sensor was evaluated by differential pulse voltammetry. The peak current measured at a voltage of 420 mV (vs. Ag/AgCl) increased linearly in the 0.1 nM to 100 µM concentration range. A very low limit of detection of 78 pM compared to those in recent studies reported in the literature was obtained. The innovative approach was successfully applied to the determination of serotonin in spiked artificial urine samples.
Collapse
Affiliation(s)
- Maroua Moslah
- NANOMISENE Laboratory, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology of Sousse (CRMN), Technopole of Sousse B. P. 334, Sahloul, Sousse 4034, Tunisia.
- University of Sousse, Higher School of Science and Technology of Hammam Sousse, 4011, Tunisia
| | - Zina Fredj
- NANOMISENE Laboratory, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology of Sousse (CRMN), Technopole of Sousse B. P. 334, Sahloul, Sousse 4034, Tunisia.
| | - Chérif Dridi
- NANOMISENE Laboratory, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology of Sousse (CRMN), Technopole of Sousse B. P. 334, Sahloul, Sousse 4034, Tunisia.
| |
Collapse
|
14
|
Wang S, Li J, Fu Y, Zhuang Z, Liu Z. Indium-doped mesoporous Bi2S3-based electrochemical interface for highly sensitive detection of Pb(II). Microchem J 2021. [DOI: 10.1016/j.microc.2021.106251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Krishnan RG, Saraswathyamma B. Murexide-derived in vitro electrochemical sensor for the simultaneous determination of neurochemicals. Anal Bioanal Chem 2021; 413:6803-6812. [PMID: 33774711 DOI: 10.1007/s00216-021-03282-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/11/2021] [Accepted: 03/09/2021] [Indexed: 01/01/2023]
Abstract
This work highlights the protocol employed for the simultaneous electroanalysis of tryptamine, serotonin and dopamine using a conducting poly-murexide-based electrode. To date, this is the first-of-its-kind report of simultaneous electrochemical determination of these three targets. Features of the developed electrode were identified by employing FE-SEM analysis. Under optimized conditions, the analytes underwent an irreversible electro-oxidation at the modified electrode surface, with a linear range of 0.5-40 μΜ, 0.4-40.4 μΜ and 0.5-40 μΜ for dopamine, serotonin and tryptamine, respectively. The electrolytic medium employed for the sensing was a phosphate-buffered solution with pH 7. The specificity of the developed electrode was also satisfactory in the presence of other biomolecules including L-phenylalanine, L-serine, glucose and ascorbic acid. Thus, the developed murexide-derived conducting-polymer-based electrode was used for the simultaneous sensing of the neurochemicals dopamine, serotonin and tryptamine. Electroanalysis was also demonstrated for these targets in human serum.
Collapse
Affiliation(s)
- Rajasree G Krishnan
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India
- Department of Chemistry, Amrita School of Arts and Sciences, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India
| | - Beena Saraswathyamma
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India.
- Department of Chemistry, Amrita School of Arts and Sciences, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India.
| |
Collapse
|
16
|
Kumar S, Gupta N, Malhotra BD. Ultrasensitive biosensing platform based on yttria doped zirconia-reduced graphene oxide nanocomposite for detection of salivary oral cancer biomarker. Bioelectrochemistry 2021; 140:107799. [PMID: 33774391 DOI: 10.1016/j.bioelechem.2021.107799] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/18/2021] [Accepted: 03/09/2021] [Indexed: 12/26/2022]
Abstract
Herein, we report results of the studies relating to the fabrication of yttria-doped zirconia-reduced graphene oxide nanocomposite (nYZR) based biosensing platform for detection of salivary CYFRA-21-1 biomarker. The nYZR nanocomposite was hydrothermally synthesized and amine-functionalized using 3-aminopropyl triethoxysilane (APTES). This functionalized nanocomposite (APTES/nYZR) was electrophoretically deposited (45 V; 3 min) onto pre-hydrolyzed indium tin oxide (ITO) coated glass substrate (APTES/nYZR/ITO) followed by biofunctionalization via covalent immobilization of the anti-CYFRA-21-1 antibodies (anti-CYFRA-21-1/APTES/nYZR/ITO). The synthesized nanomaterial and the fabricated electrodes were characterized to investigate crystal structure, morphology and electrochemical properties via X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, cyclic voltammetry, differential pulse voltammetry and electrochemical impedance spectroscopy. The fabricated biosensing electrode (BSA/anti-CYFRA-21-1/APTES/nYZR/ITO) has an operating shelf life of 56 days and can be used to detect salivary CYFRA-21-1 biomarker concentration as low as 7.2 pg mL-1 with wide linear detection range of 0.01-50 ng mL-1. This work opens new opportunities to explore the electrochemical behavior of nanostructured yttria stabilized zirconia (YSZ) and its composites at room temperature and its utility in developing biosensors and other electrochemical devices.
Collapse
Affiliation(s)
- Suveen Kumar
- Nanobioelectronics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi 110042, India; Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Niharika Gupta
- Nanobioelectronics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi 110042, India
| | - Bansi D Malhotra
- Nanobioelectronics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi 110042, India.
| |
Collapse
|
17
|
Nirbhaya V, Chauhan D, Jain R, Chandra R, Kumar S. Nanostructured graphitic carbon nitride based ultrasensing electrochemical biosensor for food toxin detection. Bioelectrochemistry 2021; 139:107738. [PMID: 33497923 DOI: 10.1016/j.bioelechem.2021.107738] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/23/2020] [Accepted: 01/03/2021] [Indexed: 01/15/2023]
Abstract
We report results of the studies related to the fabrication of thionine functionalized graphitic carbon nitride nanosheets based ultrasensing platform for food toxin (Aflatoxin B1, AfB1) detection. The synthesis of graphitic carbon nitride nanosheets (g-C3N4) was carried out by polycondensation of melamine followed by chemical exfoliation. Further, thionine was used for the functionalization of g-C3N4 (Thn/g-C3N4) and deposited electrophoretically onto the indium tin oxide (ITO) coated glass electrode. The fabricated Thn/g-C3N4/ITO electrode was covalently immobilized by EDC-NHS chemistry with anti-aflatoxin B1 (anti-AfB1) followed by blocking of non-specific sites using BSA molecules. For structural, morphological, functional and electrochemical properties analysis of synthesized nanomaterials and fabricated electrodes X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, atomic force microscopy and cyclic voltammetry techniques were used. The electrochemical response studies of the fabricated biosensing platform (BSA/anti-AfB1/Thn/g-C3N4/ITO) were carried out towards detection of AfB1 antigen using cyclic voltammetry technique. The obtained electrochemical results indicate that the fabricated biosensing electrode having ability to detect AfB1 with lower limit of detection of 0.328 fg mL-1, linear detection range in between 1 fg mL-1 to 1 ng mL-1, sensitivity of 4.85 μA log [ng-1 mL] cm-2 with stability upto 7 weeks.
Collapse
Affiliation(s)
| | - Dipti Chauhan
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Raghav Jain
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Ramesh Chandra
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Suveen Kumar
- Department of Chemistry, University of Delhi, Delhi 110007, India.
| |
Collapse
|
18
|
Chaudhary C, Kumar S, Chandra R. Hierarchical structure of molybdenum disulfide-reduced graphene oxide nanocomposite for the development of a highly efficient serotonin biosensing platform. NEW J CHEM 2021. [DOI: 10.1039/d1nj03534g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molybdenum disulfide-reduced graphene oxide nanocomposite based immunosensor for the serotonin detection.
Collapse
Affiliation(s)
- Chhaya Chaudhary
- Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Suveen Kumar
- Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Ramesh Chandra
- Department of Chemistry, University of Delhi, Delhi-110007, India
- Dr B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi-110007, India
| |
Collapse
|