1
|
O AA, George S. Picric Acid Incorporated Fluorescent Nitrogen Doped Carbon Dot for "Turn-On" Detection of Glutathione. J Fluoresc 2025; 35:411-420. [PMID: 38079028 DOI: 10.1007/s10895-023-03541-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/30/2023] [Indexed: 02/09/2025]
Abstract
Glutathione (GSH), a non-protein thiol in living cells whose abnormal level indicates the onset of diseases like Alzheimer's, HIV, diabetes, cancer, Parkinson's, Dementia, etc. Herein, we have synthesized a low-cost, selective, and sensitive detection platform by using citric acid and urea-derived fluorescent carbon dots (NCDs) via the microwave-assisted method, showing fluorescence at 444 nm. This fluorescence was quenched with picric acid (PA), and this probe, picric acid incorporated nitrogen doped carbon dot (NCDs@PA) was further used for the detection of GSH. The characterization of the probe was done by photoluminescence study, UV-Visible absorption studies, ATR-FTIR, SEM, and DLS analysis. GSH induced fluorescence recovery due to the competitive binding of GSH to PA. GSH was detected within a linear range of 0.31 mM- 2.43 mM with a Limit of Detection (LoD) and Limit of Quantification (LoQ) of 32.10 µM and 107.32 µM, respectively. The sensor exhibited good selectivity and sensitivity towards GSH among various co-existing ions and biomolecules. The paper-strip-based sensing of glutathione was conducted to check practical applicability of the probe, and a real sample analysis was also conducted from spiked human samples.
Collapse
Affiliation(s)
- Aswathy A O
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom, Thiruvananthapuram, 695581, Kerala, India
| | - Sony George
- Department of Chemistry, International Inter University Centre for Sensing and Imaging (IIUCSI), University of Kerala, Kariavattom, Thiruvananthapuram, 695581, Kerala, India.
| |
Collapse
|
2
|
Hu Z, Cheng M, Zhang Y, Zhang L, Xu H, Zhu X. A Sensitive and Quick Fluorescent Sensor for the "Turn-On" Detection and Imaging of Glutathione Based on Sulfur Quantum Dots and MnO 2 Nanosheets. LUMINESCENCE 2024; 39:e4929. [PMID: 39508153 DOI: 10.1002/bio.4929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 11/08/2024]
Abstract
Glutathione (GSH) is one of the most abundant bioethanol antioxidants in living cells. Here, a fluorescent probe based on MnO2 nanosheets and sulfur quantum dots (SQDs) was fabricated. Because of the synergistic effect of IFE and FRET, the fluorescence from SQDs was quenched by MnO2 nanosheets. In the presence of GSH, the fluorescence of SQDs could be recovered because of the reduction of MnO2 nanosheets by GSH. The method can detect GSH in the concentration range of 5 ~ 1000 μM with the detection limit as low as 1.26 μM. This quick, easy, and cost-effective sensor could be used for the quantification of GSH in serum samples and the imaging of GSH in Escherichia coli O157:H7.
Collapse
Affiliation(s)
- Zhenlin Hu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Min Cheng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yuanyan Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Leyao Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Huifeng Xu
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Xi Zhu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
3
|
Qiu J, Ahmad F, Ma J, Sun Y, Liu Y, Xiao Y, Xu L, Shu T, Zhang X. From synthesis to applications of biomolecule-protected luminescent gold nanoclusters. Anal Bioanal Chem 2024; 416:3923-3944. [PMID: 38705905 DOI: 10.1007/s00216-024-05303-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024]
Abstract
Gold nanoclusters (AuNCs) are a class of novel luminescent nanomaterials that exhibit unique properties of ultra-small size, featuring strong anti-photo-bleaching ability, substantial Stokes shift, good biocompatibility, and low toxicity. Various biomolecules have been developed as templates or ligands to protect AuNCs with enhanced stability and luminescent properties for biomedical applications. In this review, the synthesis of AuNCs based on biomolecules including amino acids, peptides, proteins and DNA are summarized. Owing to the advantages of biomolecule-protected AuNCs, they have been employed extensively for diverse applications. The biological applications, particularly in bioimaging, biosensing, disease therapy and biocatalysis have been described in detail herein. Finally, current challenges and future potential prospects of bio-templated AuNCs in biological research are briefly discussed.
Collapse
Affiliation(s)
- Jiafeng Qiu
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Faisal Ahmad
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jianxin Ma
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yanping Sun
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ying Liu
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yelan Xiao
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Long Xu
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen, China
| | - Tong Shu
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Xueji Zhang
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
4
|
Wang X, Jin Y, Ai W, Wang S, Zhang Z, Zhou T, Wang F, Zhang G. Dual-mode fluorescence and colorimetric sensing of sulfide anion in natural water based on near-infrared Ag 2S quantum dots and MnO 2 nanosheets complex. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 307:123626. [PMID: 37952425 DOI: 10.1016/j.saa.2023.123626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
Near infrared (NIR) emission Ag2S quantum dots (QDs) are of great value for biochemical sensing with strong anti-interference and low toxicity. Herein, NIR fluorescence Ag2S QDs were synthesized successfully. Combined with the excellent oxidase-like characteristics of manganese dioxide (MnO2) nanosheets, a fluorescence and colorimetric dual-mode sensor for sulfide anion was developed. MnO2 nanosheets could effectively catalyze the oxidation of TMB to produce blue TMB oxide (ox TMB), at the same time, the fluorescence of Ag2S QDs could be effectively quenched by fluorescence internal filtration effect (IFE) and dynamic quenching effect. The enzyme-like activity was weakened and the NIR fluorescence of Ag2S QDs was restored when sulfide anion (S2-) was added, due to the reduction of MnO2 to Mn2+.The linear ranges for fluorescence and colorimetric analysis of S2- were 2-250 μM and 0.3-50 μM, with detection limits of 0.6 and 0.215 μM, correspondingly. The dual-mode sensor had a wider detection range, higher sensitivity and shorter reaction time, which could be used for highly selective detection of S2- in different concentration ranges. In addition, it had been successfully applied to the determination of sulfide in water samples with satisfactory accuracy and sensitivity.
Collapse
Affiliation(s)
- Xiufeng Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Yao Jin
- Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Wenhui Ai
- Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Siqi Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Zhiqing Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Ting Zhou
- Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Fang Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Guodong Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
5
|
Hao G, Tian H, Zhang Z, Qin X, Yang T, Yuan L, Yang X. A dual-channel and dual-signal microfluidic paper chip for simultaneous rapid detection of difenoconazole and mancozeb. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
6
|
Ning Q, Chen Q, Huang Y, Wang Y, Wang Y, Liu Z. Development of a Hg2+-Stabilized Double-Stranded DNA Probe for Low-Cost Visual Detection of Glutathione in Food Based on G-Quadruplex/hemin DNAzymes. JOURNAL OF ANALYTICAL CHEMISTRY 2022; 77:1517-1525. [DOI: 10.1134/s1061934822120103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 05/14/2025]
|
7
|
Jin Y, Xu M, Jin Y, Deng S, Tao N, Qiu W. Simultaneous Detection and Analysis of Free Amino Acids and Glutathione in Different Shrimp. Foods 2022; 11:foods11172599. [PMID: 36076785 PMCID: PMC9455249 DOI: 10.3390/foods11172599] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 12/02/2022] Open
Abstract
An amino acid analyzer method for the simultaneous determination of 20 free amino acids (FAAs) and glutathione (GSH) in Penaeus vannamei (PV), Penaeus vannamei, Penaeus hidulis (PH) and Penaeus japonicus (PJ) were developed. The effects of different concentrations of trichloroacetic acid (TCA) and ethanol on the extraction of free amino acids were investigated, and 120 g·L−1 TCA was found to be ideal. The target analytes were eluted in sodium citrate buffer B1 (pH = 3.3) containing 135 mL·L−1 ethanol and 1 mol·L−1 sodium hydroxide (7 mL) and at the optimizing conversion time of sodium citrate buffer B2 (pH = 3.2) and sodium citrate buffer B3 (pH = 4.0) of 5.6 min, and the effective separation was achieved within 29.5 min. The developed method showed good linearity (R2 ≥ 0.9991) in the range of 1–250 µg·mL−1 with good intra-day and inter-day precision (relative standard deviations ≤ 2.38%) and spike recovery (86.42–103.64%). GSH and cysteine were used to identify marine prawn and freshwater shrimp. Hydroxyproline and serine were used to distinguish PV and Macrobrachium nipponense (MN) from others, respectively. The highest content of the total FAAs was found in PV, and principal component analysis revealed that PV had the highest comprehensive score for FAAs and GSH. Arginine was found to have the greatest influence on shrimp flavor.
Collapse
Affiliation(s)
- Yinzhe Jin
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Minhua Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yingshan Jin
- College of Bioscience and Technology, Yangzhou University, Yangzhou 277600, China
| | - Shanggui Deng
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316000, China
| | - Ningping Tao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Correspondence: (N.T.); (W.Q.)
| | - Weiqiang Qiu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Correspondence: (N.T.); (W.Q.)
| |
Collapse
|
8
|
Zhang Y, Yan H, Su R, Li P, Wen F, Lv Y, Cai J, Su W. Photoactivated multifunctional nanoplatform based on lysozyme-Au nanoclusters-curcumin conjugates with FRET effect and multiamplified antimicrobial activity. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Peng B, Guo Y, Ma Y, Zhou M, Zhao Y, Wang J, Fang Y. Smartphone-assisted multiple-mode assay of ascorbic acid using cobalt oxyhydroxide nanoflakes and carbon quantum dots. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Li N, Shi L, Zou X, Wang T, Wang D, Gong Z, Fan M. Fluorescence immunoassay rapid detection of 2019-nCoV antibody based on the fluorescence resonance energy transfer between graphene quantum dots and Ag@Au nanoparticle. Microchem J 2021; 173:107046. [PMID: 34866656 PMCID: PMC8632743 DOI: 10.1016/j.microc.2021.107046] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/28/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has dramatically changed the world, is a highly contagious virus. The timely and accurate diagnosis of SARS-CoV-2 infections is vital for disease control and prevention. Here in this work, a fluorescence immunoassay was developed to detect 2019 Novel Coronavirus antibodies (2019-nCoV mAb). Fluorescent graphene quantum dots (GQDs) and Ag@Au nanoparticles (Ag@AuNPs) were successfully synthesized and characterized. Fluorescence resonance energy transfer (FRET) enables effective quenching of GQDs fluorescence by Ag@AuNPs. With the presence of 2019-nCoV mAb, a steric hindrance was observed between the Ag@AuNPs-NCP (2019-nCoV antigen) complex and GQDs, which reduced the FRET efficiency and restored the fluorescence of GQDs. The fluorescence enhancement efficiency has a satisfactory linear relationship with the logarithm of the 2019-nCoV mAb in a concentration range of 0.1 pg mL−1–10 ng mL−1, and the limit of detection was 50 fg mL−1. The method has good selectivity. When the serum sample was spiked with 2019-nCoV mAb, the recovery rate was between 90.8% and 103.3%. The fluorescence immunosensor demonstrates the potential to complement the existing serological assays for COVID-19 diagnosis.
Collapse
Affiliation(s)
- Nan Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Linhong Shi
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Xue Zou
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Tengfei Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Dongmei Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China.,State-province Joint Engineering Laboratory of Spatial Information Technology of High-Speed Rail Safety, Chengdu 611756, China
| | - Zhengjun Gong
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China.,State-province Joint Engineering Laboratory of Spatial Information Technology of High-Speed Rail Safety, Chengdu 611756, China
| | - Meikun Fan
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China.,State-province Joint Engineering Laboratory of Spatial Information Technology of High-Speed Rail Safety, Chengdu 611756, China
| |
Collapse
|
11
|
Bovine serum albumin-encapsulated gold nanoclusters-Cu2+ synergize and promote calcein chemiluminescence for glutathione detection in human whole blood. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
N-doped MoS 2-nanoflowers as peroxidase-like nanozymes for total antioxidant capacity assay. Anal Chim Acta 2021; 1180:338740. [PMID: 34538313 DOI: 10.1016/j.aca.2021.338740] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/17/2021] [Accepted: 06/04/2021] [Indexed: 12/19/2022]
Abstract
Total Antioxidant Capacity (TAC) Assay plays an important role in evaluating the quality of antioxidant food and monitoring the oxidative stress level of human body. It is mainly achieved by measuring the contents of antioxidants such as AA, L-Cys and GSH, while TAC can be detected by using peroxidase-like activity of artificial nanoenzyme materials. In this work, the N-Doped, defect-rich N-MoS2NFs nano-materials were used to build the nano enzyme, which has strong stability and high peroxidase-like activity. H2O2 was detected because it can be catalyzed to generate the intermediate ·OH and make TMB appears blue. However, when H2O2, AA, L-Cys and GSH coexist in solution, due to the oxidation resistance of AA, L-Cys and GSH, they can competitively react with ·OH in solution or reduce TMB in oxidation state (oxTMB), which reduces the characteristic absorption of oxTMB, indirectly achieves the purpose of detecting AA, L-Cys and GSH, and finally realizes the determination of TAC, even in actual serum and saliva samples. At the same time, the N-MoS2 NFs/NH2-MIL-53(Al)+OPD system is further constructed. Based on the fluorescence resonance energy transfer (FRET) between NH2-MIL-53(Al) and oxidized OPD (oxOPD), the purpose of detecting TAC by fluorescence method was realized.
Collapse
|
13
|
Liu H, Dong L, Wang M, Huang G. A new method for cartap detection with high sensitivity and selectivity based on the inner filter effect between GSH-Cu NCs and Au NPs. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2659-2664. [PMID: 34037634 DOI: 10.1039/d1ay00591j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Herein, a novel and sensitive fluorescence method for cartap determination is established on the basis of the inner filter effect (IFE) of gold nanoparticles (Au NPs) on the fluorescence of glutathione protected Cu NCs (GSH-Cu NCs). In the presence of Au NPs, the fluorescence of GSH-Cu NCs was strongly quenched by the IFE because the absorption spectra of Au NPs overlap well with the emission spectra of GSH-Cu NCs. Upon addition of cartap, cartap could induce the aggregation of Au NPs whose absorption spectrum does not overlap with the emission spectrum of GSH-Cu NCs. Then, with the increase in cartap concentration, the IFE-decreased fluorescence was gradually recovered, realizing the fluorescence sensing of cartap. Under optimal conditions, the proposed method has a good linear relationship with cartap concentration in the range of 7-100 nM, and the detection limit is 3.34 nM. In addition, satisfactory results were obtained for cartap analysis using tap water and cabbage as real samples, which demonstrated that the method as-developed would have great practical application prospects.
Collapse
Affiliation(s)
- Haijian Liu
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, 262700 Weifang, China. and Weifang Key Laboratory of Pollution Control and Resource Utilization of Chemical Wastewater, Weifang University of Science and Technology, Shouguang, 262700 Weifang, China
| | - Libin Dong
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, 262700 Weifang, China.
| | - Miao Wang
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, 262700 Weifang, China.
| | - Guofu Huang
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, 262700 Weifang, China. and Weifang Key Laboratory of Pollution Control and Resource Utilization of Chemical Wastewater, Weifang University of Science and Technology, Shouguang, 262700 Weifang, China
| |
Collapse
|
14
|
Qaitoon A, Yong J, Zhang Z, Liu J, Xu ZP, Zhang R. Development of manganese dioxide-based nanoprobes for fluorescence detection and imaging of glutathione. NEW J CHEM 2021. [DOI: 10.1039/d1nj01843d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A manganese dioxide-based nanoprobe is developed for fluorescence detection and imaging of glutathione (GSH) in yeast cells and onion tissues.
Collapse
Affiliation(s)
- Ali Qaitoon
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St. Lucia
- Australia
| | - Jiaxi Yong
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St. Lucia
- Australia
| | - Zexi Zhang
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St. Lucia
- Australia
| | - Jie Liu
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St. Lucia
- Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St. Lucia
- Australia
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St. Lucia
- Australia
| |
Collapse
|