1
|
Zhang Q, Liu Q, Liu Y, Wang H, Chen J, Shi T. PEC thrombin aptasensor based on Ag-Ag 2S decorated hematite photoanode with signal-down effect of precipitation catalyzed by G-quadruplexes/hemin. Biosens Bioelectron 2023; 232:115321. [PMID: 37075612 DOI: 10.1016/j.bios.2023.115321] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/12/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
A photoelectrochemical (PEC) aptasensor for thrombin detection was rationally designed based on the photoanode of one-dimensional hematite nanorods (α-Fe2O3 NRs) with several steps of modifications. Uniform α-Fe2O3 NRs were grown vertically on the surface of fluorine-doped tin oxide (FTO) conductive glass through a one-step hydrothermal method; then Ag was grown on the surface of α-Fe2O3 NRs through a photoreduction method followed by a partial in-situ transformation into Ag2S, conferring an improvement on the initial photocurrent. Two main critical factors, namely, the steric hindrance of thrombin, benzoquinone (BQ) precipitation oxidized by H2O2 under the catalysis of G-quadruplexes/hemin, contributed to the sensitive signal-down response toward the target. Photocurrent signals related with thrombin concentration was established for thrombin analysis due to the non-conductive complex as well as their competitive consumption of electron donors and irradiation light. The excellent initial photocurrent was combined with the signal-down amplification in the design of the biosensor, conferring a limit of detection (LOD) as low as 40.2 fM and a wide linear range from 0.0001 nM to 50 nM for the detection of thrombin. The proposed biosensor was also assessed in terms of selectivity, stability, and applicability in human serum analyses, which provided an appealing maneuver for the specific analysis of thrombin in trace amount.
Collapse
Affiliation(s)
- Qiaoxia Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang, 277160, Shandong Province, China.
| | - Qingyun Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong Province, China.
| | - Yang Liu
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang, 277160, Shandong Province, China
| | - Houchen Wang
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang, 277160, Shandong Province, China
| | - Jialiang Chen
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang, 277160, Shandong Province, China
| | - Tiesheng Shi
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang, 277160, Shandong Province, China.
| |
Collapse
|
2
|
Bezuneh TT, Fereja TH, Kitte SA, Li H, Jin Y. Gold nanoparticle-based signal amplified electrochemiluminescence for biosensing applications. Talanta 2022; 248:123611. [PMID: 35660995 DOI: 10.1016/j.talanta.2022.123611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/05/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
Since the content levels of biomarkers at the early stage of many diseases are generally lower than the detection threshold concentration, achieving ultrasensitive and accurate detection of these biomarkers is still one of the major goals in bio-analysis. To achieve ultrasensitive and reliable bioassay, it requires developing highly sensitive biosensors. Among all kinds of biosensors, electrogenerated chemiluminescence (ECL) based biosensors have attracted enormous attention due to their excellent properties. In order to improve the performance of ECL biosensors, gold nanoparticles (Au NPs) have been widely utilized as signal amplification tags. The introduction of Au NPs could dramatically enhance the performance of the constructed ECL biosensors via diverse ways such as electrode modification material, efficient energy acceptor in ECL resonant energy transfer (ECL-RET), reaction catalyst, surface plasmon resonance (SPR) enhancer, and as nanocarrier. Herein, we summarize recent developments and progress of ECL biosensors based on Au NPs signal amplification strategies. We will cover ECL applications of Au NPs as a signal amplification tag in the detection of proteins, metal ions, nucleic acids, small molecules, living cells, exosomes, and cell imaging. Finally, brief summary and future outlooks of this field will be presented.
Collapse
Affiliation(s)
- Terefe Tafese Bezuneh
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Street, Changchun, 130022, PR China; University of Science and Technology of China, Hefei, 230026, PR China; Department of Chemistry, College of Natural Sciences, Arbaminch University, P.O. Box 21, Arbaminch, Ethiopia
| | - Tadesse Haile Fereja
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Street, Changchun, 130022, PR China; Department of Pharmacy, College of Medicine and Health Science, Ambo University, P.O. Box 19, Ambo, Ethiopia
| | - Shimeles Addisu Kitte
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Street, Changchun, 130022, PR China
| | - Haijuan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Street, Changchun, 130022, PR China.
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Street, Changchun, 130022, PR China; University of Science and Technology of China, Hefei, 230026, PR China.
| |
Collapse
|
3
|
Luo W, Ye Z, Song D, Ma P. A sensitive electrochemiluminescent sensor chip based on ssDNA-Ru (II) complex and aptamer for the determination of thrombin. LUMINESCENCE 2022; 37:980-986. [PMID: 35411721 DOI: 10.1002/bio.4248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/06/2022]
Abstract
In this work, an electrochemiluminescence (ECL) sensor chip for sensitive detection of thrombin (TB) was prepared using a screen-printed electrode (SPE) as a working electrode and an aptamer as a specific recognition moiety. To produce an ECL sensor chip, a layer of pL-Cys was immobilized on the surface of SPE by the cyclic voltammetry scanning method, a layer of AuNPs was assembled through an Au-S bond and hairpin DNA was further immobilized on the electrode surface. Ru (bpy)2 (mcpbpy)2+ , as a luminescent reagent, was covalently bound to ssDNA to prepare a luminescent probe ssDNA-Ru. The probe hybridized with TB aptamer to form a capture probe. In the presence of TB, the TB aptamer in the capture probe bound to TB, causing the release of ssDNA-Ru that could bind to hairpin DNA on the electrode surface. Ru (II) complex as a luminescent reagent was assembled onto the electrode, and pL-Cys was used as a co-reactant to. enhance the ECL efficiency. The ECL signal of the sensor chip generated based on the above principles had a linear relationship with log TB concentration at a range of 10 fM-1 nM, and the detection limit was 0.2 fM. Finally, TB detection by this method was verified using real blood samples. This work provides a new method using an aptamer as a foundation and SPE as a material for the detection of biological substances.
Collapse
Affiliation(s)
- Weiwei Luo
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, China.,School of Chemistry and Life Science, Anshan Normal University, Ping'an Street 43, Anshan, China
| | - Zhuoxin Ye
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, China
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, China
| | - Pinyi Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, China
| |
Collapse
|
4
|
Wang H, Pei F, Liu C, Ni Y, Xia M, Feng S, Hao Q, Yang T, Lei W. Efficient detection for Nitrofurazone based on novel Ag 2S QDs/g-C 3N 4 fluorescent probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 269:120727. [PMID: 34979470 DOI: 10.1016/j.saa.2021.120727] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/19/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
In the paper, a novel fluorescent probe based on Ag2S QDs/g-C3N4 composite was synthesized by loading Ag2S quantum dots (Ag2S QDs) on the surface of g-C3N4 through in-situ synthesis method and developed to detect Nitrofurazone (NFZ) sensitively. The results showed that the linear detection range of Ag2S QDs/g-C3N4 to NFZ was 0-30 μM, with a low detection limit of 0.054 μM. The results of time-fluorescence-resolved spectroscopy and UV-vis absorption spectroscopy exhibited that the possible detection mechanism of Ag2S QDs/g-C3N4 to NFZ was proposed to be Internal Filtration Effect (IFE). Moreover, Multiwfn wavefunction analysis was employed to uncover the possible interaction between the Ag2S QDs/g-C3N4 and NFZ, thereby further revealing the fluorescence detection mechanism from the scale of atoms. Combining experiments and theoretical calculations, we proposed the sensing mechanism of the formation of non-fluorescent ground state complex linked by hydrogen bonds. This work indicated that the Ag2S QDs/g-C3N4 composite processed the ability to detect NFZ efficiently and sensitively.
Collapse
Affiliation(s)
- Hualai Wang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, JiangSu 210094, China
| | - Fubin Pei
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, JiangSu 210094, China
| | - Chun Liu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, JiangSu 210094, China
| | - Yue Ni
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, JiangSu 210094, China
| | - Mingzhu Xia
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, JiangSu 210094, China
| | - Shasha Feng
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, JiangSu 210094, China
| | - Qingli Hao
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, JiangSu 210094, China
| | - Tinghai Yang
- School of Chemistry & Environmental Engineering, Jiangsu University of Technology, Changzhou 23001, PR China
| | - Wu Lei
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, JiangSu 210094, China.
| |
Collapse
|
5
|
N, P Co-Doped Carbon Dots as Multifunctional Fluorescence Nano-Sensor for Sensitive and Selective Detection of Cr(VI) and Ascorbic Acid. JOURNAL OF ANALYSIS AND TESTING 2022. [DOI: 10.1007/s41664-022-00213-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
6
|
Catalytic hairpin assembly as cascade nucleic acid circuits for fluorescent biosensor: design, evolution and application. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Qian S, Chang D, He S, Li Y. Aptamers from random sequence space: Accomplishments, gaps and future considerations. Anal Chim Acta 2022; 1196:339511. [DOI: 10.1016/j.aca.2022.339511] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 02/07/2023]
|
8
|
Liu Q, Liu M, Jin Y, Li B. Rapid and enzyme-free signal amplification for fluorescent detection of microRNA via localized catalytic hairpin assembly on gold nanoparticles. Talanta 2021; 242:123142. [DOI: 10.1016/j.talanta.2021.123142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/08/2021] [Accepted: 12/11/2021] [Indexed: 12/17/2022]
|
9
|
A Fluorescence Kinetic-Based Aptasensor Employing Stilbene Isomerization for Detection of Thrombin. MATERIALS 2021; 14:ma14226927. [PMID: 34832326 PMCID: PMC8624160 DOI: 10.3390/ma14226927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 02/06/2023]
Abstract
It is important to detect thrombin due to its physiological and pathological roles, where rapid and simple analytical approaches are needed. In this study, an aptasensor based on fluorescence attenuation kinetics for the detection of thrombin is presented, which incorporates the features of stilbene and aptamer. We designed and synthesized an aptasensor by one-step coupling of stilbene compound and aptamer, which employed the adaptive binding of the aptamer with thrombin to cause a change in stilbene fluorescence attenuation kinetics. The sensor realized detection of thrombin by monitoring the variation in apparent fluorescence attenuation rate constant (kapp), which could be further used for probing of enzyme–aptamer binding. In comprehensive studies, the developed aptasensor presented satisfactory performance on repeatability, specificity, and regeneration capacity, which realized rapid sensing (10 s) with a limit of detection (LOD) of 0.205 μM. The strategy was successful across seven variants of thrombin aptasensors, with tunable kapp depending on the SITS (4-Acetamido-4′-isothiocyanato-2,2′-stilbenedisulfonic acid disodium salt hydrate) grafting site. Analyte detection mode was demonstrated in diluted serum, requiring no separation or washing steps. The new sensing mode for thrombin detection paves a way for high-throughput kinetic-based sensors for exploiting aptamers targeted at clinically relevant proteins.
Collapse
|
10
|
Shen M, Wang Y, Kan X. Dual-recognition colorimetric sensing of thrombin based on surface-imprinted aptamer-Fe 3O 4. J Mater Chem B 2021; 9:4249-4256. [PMID: 34008694 DOI: 10.1039/d1tb00565k] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Thrombin plays an essential role in blood coagulation and some physiological and pathological processes. The convenient, rapid, sensitive, and specific detection of thrombin is of great significance in clinical research and diagnosis. Herein, surface molecularly imprinted polymer (MIP) was modified on aptamer-functionalized Fe3O4 nanoparticles (MIP-aptamer-Fe3O4 NP) for thrombin colorimetric assay by taking advantage of the peroxidase-like activity of Fe3O4 NP. With the adsorption of thrombin into imprinted cavities, the exposed surface area of Fe3O4 NP decreased, causing a decrease in its peroxidase-like activity toward 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2. On the other hand, the reductive amino acids on the thrombin surface also impeded the oxidation of TMB. Both phenomena caused the light blue color of the sensing solution. Thus, a specifically sensitive colorimetric approach for the visual detection of thrombin was proposed with a linear range and limit of detection of 108.1 pmol L-1-2.7 × 10-5 mol L-1 and 27.8 pmol L-1, respectively. Moreover, due to the double recognition elements of MIP and aptamer, the prepared MIP-aptamer-Fe3O4 NP showed higher selectivity to thrombin than that based on only one recognition element. It is worth noting that no special property (e.g. electrochemical or fluorescence activity) of the template was required in this work. Thus, more template molecules can be easily, selectively, and sensitively detected based on the proposed MIP-aptamer-mimic enzyme colorimetric sensing strategy.
Collapse
Affiliation(s)
- Mingmei Shen
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China. and The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Chemo-Biosensing, Anhui Normal University, Wuhu 241000, P. R. China
| | - Yuanyuan Wang
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China. and The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Chemo-Biosensing, Anhui Normal University, Wuhu 241000, P. R. China
| | - Xianwen Kan
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China. and The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Chemo-Biosensing, Anhui Normal University, Wuhu 241000, P. R. China
| |
Collapse
|