1
|
Baskar A, Madhivanan K, Atchudan R, Arya S, Sundramoorthy AK. Nanoparticle electrochemical biosensors for virus detection. Clin Chim Acta 2025; 566:120054. [PMID: 39551230 DOI: 10.1016/j.cca.2024.120054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Viruses pose a significant threat to global public health, underscoring the urgent need for rapid, accurate, and sensitive diagnostic methods for timely detection and intervention. The demand for efficient diagnostics that can detect a wide range of viral pathogens has never been greater. In this context, metal nanoparticle-based biosensors have emerged as a promising solution, offering exceptional sensitivity for detecting various analytes, including nucleic acids (DNA/RNA), proteins, and other biomarkers associated with pathogens. These biosensors are particularly critical for the development of point-of-care (POC) diagnostic tools, enabling early detection of infectious agents. This review explores recent advancements in nanoparticle (NP)-based biosensors that utilize noble metals like gold (Au), silver (Ag), and platinum (Pt) for viral pathogen detection, focusing on viruses such as SARS-CoV, HIV, hepatitis, influenza, and Zika. It highlights the role of NP-based electrochemical sensors and compares traditional and contemporary detection techniques. The review also examines key performance metrics such as limits of detection (LOD), linear detection ranges, cost-effectiveness, and accessibility, with a special emphasis on their application in POC diagnostics. The aim is to provide researchers with valuable insights into the development of next-generation NP-based biosensors, facilitating the creation of innovative diagnostic technologies for viral diseases.
Collapse
Affiliation(s)
- Anandavalli Baskar
- Centre for Nano-Biosensors, Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, Tamil Nadu, India
| | - Keerthana Madhivanan
- Centre for Nano-Biosensors, Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, Tamil Nadu, India
| | - Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Sandeep Arya
- Department of Physics, University of Jammu, Jammu, Jammu and Kashmir, 180006, India
| | - Ashok K Sundramoorthy
- Centre for Nano-Biosensors, Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, Tamil Nadu, India.
| |
Collapse
|
2
|
Jiang Y, Zhu P, Bai J, Wang Z, Li X, Xu S, Zhang C, Li S, Song T, Tan F, Wang Z, Luo A, Xie B, Yang Y, Han J. Electrochemical Platform Based on the Bi 2Te 3 Family of Topological Insulators for the Detection of SARS-CoV-2 Pathogenic Factors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39276098 DOI: 10.1021/acs.langmuir.4c02127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
Accurate and rapid detection of the causative agent of a disease is of great importance in controlling the spread of the disease. This work developed a biosensor with the Bi2Te3 family of topological insulators for detection of the SARS-CoV-2 virulence factor. The Bi2Te3 family is a three-dimensional topological insulator material with topologically protected surface states; the presence of these surface states facilitates charge transfer between the electrode and electrolyte interface. Compared with the detection performance of Bi2Se3, BiSbTeSe2, and a trivial insulator like Sb2Se3, Bi2Te3 exhibits superior characteristics. A Bi2Te3 electrochemical detection platform is utilized to fabricate a sensor that can detect SARS-CoV-2 DNA, RNA, and antigen for label-free target detection. The concentration range of DNA detection by the biosensor using Bi2Te3 is between 1.0 × 10-15 and 1.0 × 10-10 M, and the detection limit can reach 1.41 × 10-16 M. Furthermore, it exhibits excellent selectivity and maintains good stability even after being stored for 14 days. This study provides a new way to apply topological insulator materials in the field of biosensors and use their unique electronic structure to improve the accuracy and speed of disease detection and diagnosis.
Collapse
Affiliation(s)
- Yujiu Jiang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
- International Center for Quantum Materials, Beijing Institute of Technology, Zhuhai 519000, China
- Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Peng Zhu
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
- International Center for Quantum Materials, Beijing Institute of Technology, Zhuhai 519000, China
- Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Jiangyue Bai
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
- International Center for Quantum Materials, Beijing Institute of Technology, Zhuhai 519000, China
- Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Zihang Wang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
- International Center for Quantum Materials, Beijing Institute of Technology, Zhuhai 519000, China
- Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Xiuxia Li
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
- International Center for Quantum Materials, Beijing Institute of Technology, Zhuhai 519000, China
- Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Shiqi Xu
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
- International Center for Quantum Materials, Beijing Institute of Technology, Zhuhai 519000, China
- Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Chunpan Zhang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
- International Center for Quantum Materials, Beijing Institute of Technology, Zhuhai 519000, China
- Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Shanshan Li
- Department of Rheumatology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Tinglu Song
- Experimental Centre of Advanced Materials School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Fan Tan
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zhiwei Wang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
- International Center for Quantum Materials, Beijing Institute of Technology, Zhuhai 519000, China
- Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Aiqin Luo
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Bingteng Xie
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yanbo Yang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
- International Center for Quantum Materials, Beijing Institute of Technology, Zhuhai 519000, China
- Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Junfeng Han
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
- International Center for Quantum Materials, Beijing Institute of Technology, Zhuhai 519000, China
- Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
3
|
Hosnedlova B, Werle J, Cepova J, Narayanan VHB, Vyslouzilova L, Fernandez C, Parikesit AA, Kepinska M, Klapkova E, Kotaska K, Stepankova O, Bjorklund G, Prusa R, Kizek R. Electrochemical Sensors and Biosensors for Identification of Viruses: A Critical Review. Crit Rev Anal Chem 2024:1-30. [PMID: 38753964 DOI: 10.1080/10408347.2024.2343853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Due to their life cycle, viruses can disrupt the metabolism of their hosts, causing diseases. If we want to disrupt their life cycle, it is necessary to identify their presence. For this purpose, it is possible to use several molecular-biological and bioanalytical methods. The reference selection was performed based on electronic databases (2020-2023). This review focused on electrochemical methods with high sensitivity and selectivity (53% voltammetry/amperometry, 33% impedance, and 12% other methods) which showed their great potential for detecting various viruses. Moreover, the aforementioned electrochemical methods have considerable potential to be applicable for care-point use as they are portable due to their miniaturizability and fast speed analysis (minutes to hours), and are relatively easy to interpret. A total of 2011 articles were found, of which 86 original papers were subsequently evaluated (the majority of which are focused on human pathogens, whereas articles dealing with plant pathogens are in the minority). Thirty-two species of viruses were included in the evaluation. It was found that most of the examined research studies (77%) used nanotechnological modifications. Other ones performed immunological (52%) or genetic analyses (43%) for virus detection. 5% of the reports used peptides to increase the method's sensitivity. When evaluable, 65% of the research studies had LOD values in the order of ng or nM. The vast majority (79%) of the studies represent proof of concept and possibilities with low application potential and a high need of further research experimental work.
Collapse
Affiliation(s)
- Bozena Hosnedlova
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Julia Werle
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Jana Cepova
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Vedha Hari B Narayanan
- Pharmaceutical Technology Lab, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Lenka Vyslouzilova
- Czech Institute of Informatics, Robotics and Cybernetics, Department of Biomedical Engineering & Assistive Technologies, Czech Technical University in Prague, Prague, Czech Republic
| | - Carlos Fernandez
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Arli Aditya Parikesit
- Department of Bioinformatics, School of Life Sciences, Indonesia International Institute for Life Sciences, Jakarta, Timur, Indonesia
| | - Marta Kepinska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Eva Klapkova
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Karel Kotaska
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Olga Stepankova
- Czech Institute of Informatics, Robotics and Cybernetics, Department of Biomedical Engineering & Assistive Technologies, Czech Technical University in Prague, Prague, Czech Republic
| | - Geir Bjorklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | - Richard Prusa
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Rene Kizek
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
4
|
Nazari-Vanani R, Negahdary M. Recent advances in electrochemical aptasensors and genosensors for the detection of pathogens. ENVIRONMENTAL RESEARCH 2024; 243:117850. [PMID: 38081349 DOI: 10.1016/j.envres.2023.117850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
In recent years, pathogenic microorganisms have caused significant mortality rates and antibiotic resistance and triggered exorbitant healthcare costs. These pathogens often have high transmission rates within human populations. Rapid diagnosis is crucial in controlling and reducing the spread of pathogenic infections. The diagnostic methods currently used against individuals infected with these pathogens include relying on outward symptoms, immunological-based and, some biomolecular ones, which mainly have limitations such as diagnostic errors, time-consuming processes, and high-cost platforms. Electrochemical aptasensors and genosensors have emerged as promising diagnostic tools for rapid, accurate, and cost-effective pathogen detection. These bio-electrochemical platforms have been optimized for diagnostic purposes by incorporating advanced materials (mainly nanomaterials), biomolecular technologies, and innovative designs. This review classifies electrochemical aptasensors and genosensors developed between 2021 and 2023 based on their use of different nanomaterials, such as gold-based, carbon-based, and others that employed other innovative assemblies without the use of nanomaterials. Inspecting the diagnostic features of various sensing platforms against pathogenic analytes can identify research gaps and open new avenues for exploration.
Collapse
Affiliation(s)
- Razieh Nazari-Vanani
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Negahdary
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000, Brazil.
| |
Collapse
|
5
|
Selim AA, Abdallah AB, Awad FS, Khalifa ME, Salem Molouk AF. Electrochemical sensor based on amine- and thiol-modified multi-walled carbon nanotubes for sensitive and selective determination of uranyl ions in real water samples. RSC Adv 2023; 13:31141-31150. [PMID: 37881759 PMCID: PMC10594082 DOI: 10.1039/d3ra05374a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023] Open
Abstract
Novel selective and sensitive electrochemical sensors based on the modification of a carbon paste electrode (CPE) with novel amine- and thiol-functionalized multi-walled carbon nanotubes (MWCNT) have been developed for the detection and monitoring of uranyl ions in different real water samples. Multiwalled carbon nanotubes were grafted with 2-aminothiazole (AT/MWCNT) and melamine thiourea (MT/MWCNT) via an amidation reaction in the presence of dicyclohexyl carbodiimide (DCC) as a coupling agent. This modification for multiwalled carbon nanotubes has never been reported before. The amine and thiol groups were considered to be promising functional groups due to their high affinity toward coordination with uranyl ions. The modified multi-walled carbon nanotubes were characterized using different analytical techniques including FTIR, SEM, XPS, and elemental analysis. Subsequently, 10 wt% MT/MWCNT was mixed with 60 wt% graphite powder in the presence of 30 wt% paraffin oil to obtain a modified carbon paste electrode (MT/MWCNT/CPE). The electrochemical behavior and applications of the prepared sensors were examined using cyclic voltammetry, differential pulse anodic stripping voltammetry, and electrochemical impedance spectroscopy. The MT/MWCNT/CPE sensor exhibited a good linearity for UO22+ in the concentration range of 5.0 × 10-3 to 1.0 × 10-10 mol L-1 with low limits of detection (LOD = 2.1 × 10-11 mol L-1) and quantification (LOQ = 7 × 10-11 mol L-1). In addition, high precision (RSD = 2.7%), good reproducibility (RSD = 2.1%), and high stability (six weeks) were displayed. Finally, MT-MWCNT@CPE was successfully utilized to measure the uranyl ions in an actual water sample with excellent recoveries (97.8-99.3%). These results demonstrate that MT-MWCNT@CPE possesses appropriate accuracy and is appropriate for environmental applications.
Collapse
Affiliation(s)
- Amina A Selim
- Chemistry Department, Faculty of Science, Mansoura University Mansoura 35516 Egypt +201000166374 +201090433272
| | - A B Abdallah
- Chemistry Department, Faculty of Science, Mansoura University Mansoura 35516 Egypt +201000166374 +201090433272
- Chemistry Department, Faculty of Science, New Mansoura University New Mansoura City Egypt
| | - Fathi S Awad
- Chemistry Department, Faculty of Science, Mansoura University Mansoura 35516 Egypt +201000166374 +201090433272
- Chemistry Department, Faculty of Science, New Mansoura University New Mansoura City Egypt
| | - Magdi E Khalifa
- Chemistry Department, Faculty of Science, Mansoura University Mansoura 35516 Egypt +201000166374 +201090433272
| | - Ahmed Fathi Salem Molouk
- Chemistry Department, Faculty of Science, Mansoura University Mansoura 35516 Egypt +201000166374 +201090433272
- Chemistry Department, Faculty of Science, New Mansoura University New Mansoura City Egypt
| |
Collapse
|
6
|
Fuku X, Bilibana MP, Iwuoha E. Genosensor design and strategies towards electrochemical deoxyribonucleic acid (DNA) signal transduction: Mechanism of interaction. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Abstract
The effect of the on-going COVID-19 pandemic on global healthcare systems has underlined the importance of timely and cost-effective point-of-care diagnosis of viruses. The need for ultrasensitive easy-to-use platforms has culminated in an increased interest for rapid response equipment-free alternatives to conventional diagnostic methods such as polymerase chain reaction, western-blot assay, etc. Furthermore, the poor stability and the bleaching behavior of several contemporary fluorescent reporters is a major obstacle in understanding the mechanism of viral infection thus retarding drug screening and development. Owing to their extraordinary surface-to-volume ratio as well as their quantum confinement and charge transfer properties, nanomaterials are desirable additives to sensing and imaging systems to amplify their signal response as well as temporal resolution. Their large surface area promotes biomolecular integration as well as efficacious signal transduction. Due to their hole mobility, photostability, resistance to photobleaching, and intense brightness, nanomaterials have a considerable edge over organic dyes for single virus tracking. This paper reviews the state-of-the-art of combining carbon-allotrope, inorganic and organic-based nanomaterials with virus sensing and tracking methods, starting with the impact of human pathogenic viruses on the society. We address how different nanomaterials can be used in various virus sensing platforms (e.g. lab-on-a-chip, paper, and smartphone-based point-of-care systems) as well as in virus tracking applications. We discuss the enormous potential for the use of nanomaterials as simple, versatile, and affordable tools for detecting and tracing viruses infectious to humans, animals, plants as well as bacteria. We present latest examples in this direction by emphasizing major advantages and limitations.
Collapse
Affiliation(s)
- Muqsit Pirzada
- Technical University of Berlin, Faculty of Natural Sciences and Maths, Straße des 17. Juni 124, Berlin 10623, Germany. .,Institute of Materials Science, Faculty of Engineering, Kiel University, Kaiserstr 2, 24143 Kiel, Germany
| | - Zeynep Altintas
- Technical University of Berlin, Faculty of Natural Sciences and Maths, Straße des 17. Juni 124, Berlin 10623, Germany. .,Institute of Materials Science, Faculty of Engineering, Kiel University, Kaiserstr 2, 24143 Kiel, Germany
| |
Collapse
|
8
|
Jiang Y, Li S, Zhu P, Zhao J, Xiong X, Wu Y, Zhang X, Li Y, Song T, Xiao W, Wang Z, Han J. Electrochemical DNA Biosensors Based on the Intrinsic Topological Insulator BiSbTeSe 2 for Potential Application in HIV Determination. ACS APPLIED BIO MATERIALS 2022; 5:1084-1091. [PMID: 35157417 DOI: 10.1021/acsabm.1c01153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this work, we reported a sensitive, label-free electrochemical biosensor based on the intrinsic topological insulator (TI) BiSbTeSe2 for potential application in the determination of the HIV gene. With strong spin-obit coupling, TIs could have robust surface states with low electronic noise, which might be beneficial for the stable and sensitive electron transport between the electrode and electrolyte interface. Under optimized conditions of the biosensors using BiSbTeSe2, the differential pulse voltammetry (DPV) peak currents showed a linear relationship with the logarithm of target DNA concentrations ranging from 1.0 × 10-13 to 1.0 × 10-7 M, with a detection limit of 1.07 × 10-15 M. The sensing assay also displayed good selectivity and stability after storage at 4 °C for 7 days. This work provides an effective way to develop biosensors with topological materials, which have a potential application in the clinical determination and monitoring field.
Collapse
Affiliation(s)
- Yujiu Jiang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China.,Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China.,Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Shanshan Li
- Department of Rheumatology, China-Japan Friendship Hospital, 100029 Beijing, China
| | - Peng Zhu
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China.,Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China.,Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Jinge Zhao
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaolu Xiong
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China.,Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Yetong Wu
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China.,Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China.,Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Xu Zhang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China.,Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China.,Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Yongkai Li
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China.,Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China.,Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Tinglu Song
- Experimental Centre of Advanced Materials School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Wende Xiao
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China.,Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Zhiwei Wang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China.,Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China.,Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Junfeng Han
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China.,Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China.,Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
9
|
Moço AC, Neto JA, de Moraes DD, Guedes PH, Brussasco JG, Flauzino JM, Luz LF, Soares MM, Madurro JM, Brito-Madurro AG. Carbon ink-based electrodes modified with nanocomposite as a platform for electrochemical detection of HIV RNA. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Zhang YY, Guillon FX, Griveau S, Bedioui F, Lazerges M, Slim C. Evolution of nucleic acids biosensors detection limit III. Anal Bioanal Chem 2021; 414:943-968. [PMID: 34668044 DOI: 10.1007/s00216-021-03722-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/17/2021] [Accepted: 10/06/2021] [Indexed: 11/30/2022]
Abstract
This review is an update of two previous ones focusing on the limit of detection of electrochemical nucleic acid biosensors allowing direct detection of nucleic acid target (miRNA, mRNA, DNA) after hybridization event. A classification founded on the nature of the electrochemical transduction pathway is established. It provides an overall picture of the detection limit evolution of the various sensor architectures developed during the last three decades and a critical report of recent strategies.
Collapse
Affiliation(s)
- Yuan Yuan Zhang
- Institute of Chemistry for Life and Health Sciences (iCLeHS), Synthesis, Electrochemistry, Imaging and Analytical Systems for Diagnosis (SEISAD) Team, PSL Research University, CNRS, Chimie ParisTech, 75231, Paris, France
| | - François-Xavier Guillon
- Institute of Chemistry for Life and Health Sciences (iCLeHS), Synthesis, Electrochemistry, Imaging and Analytical Systems for Diagnosis (SEISAD) Team, PSL Research University, CNRS, Chimie ParisTech, 75231, Paris, France
| | - Sophie Griveau
- Institute of Chemistry for Life and Health Sciences (iCLeHS), Synthesis, Electrochemistry, Imaging and Analytical Systems for Diagnosis (SEISAD) Team, PSL Research University, CNRS, Chimie ParisTech, 75231, Paris, France
| | - Fethi Bedioui
- Institute of Chemistry for Life and Health Sciences (iCLeHS), Synthesis, Electrochemistry, Imaging and Analytical Systems for Diagnosis (SEISAD) Team, PSL Research University, CNRS, Chimie ParisTech, 75231, Paris, France.
| | - Mathieu Lazerges
- Faculté de Pharmacie de Paris, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Cyrine Slim
- Institute of Chemistry for Life and Health Sciences (iCLeHS), Synthesis, Electrochemistry, Imaging and Analytical Systems for Diagnosis (SEISAD) Team, PSL Research University, CNRS, Chimie ParisTech, 75231, Paris, France.
| |
Collapse
|
11
|
Abdallah AB, El-Kholany MR, Molouk AFS, Ali TA, El-Shafei AA, Khalifa ME. Selective and sensitive electrochemical sensors based on an ion imprinting polymer and graphene oxide for the detection of ultra-trace Cd(ii) in biological samples. RSC Adv 2021; 11:30771-30780. [PMID: 35479862 PMCID: PMC9041109 DOI: 10.1039/d1ra05489a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/27/2021] [Indexed: 12/20/2022] Open
Abstract
New selective and sensitive electrochemical sensors were designed based on the deposition of a promising ion imprinted polymer (IIP) on the surface of glassy carbon electrode (GCE) for the detection and monitoring of Cd(ii) in different real samples. Herein, a highly selective Cd-imprinted polymer was successfully synthesized using a novel heterocyclic compound based on the benzo[f]chromene scaffold that acted as a complexing agent and a functional monomer in the presence of azobisisobutyronitrile (initiator) and ethylene glycol dimethacrylate (cross-linker). The characterization of the synthesized chelating agent and IIP was performed using FT-IR, SEM, 1H-NMR, EIMS, and EDX analyses. After that, the voltammetric sensor was manufactured by introducing graphene oxide (GO) on the surface of GCE; then, the IIP was grown by a drop coating technique. The electrochemical characterization of the voltammetric sensor (IIP/GO@GCE) was performed by CV and EIS. For comparison, the potentiometric sensor was also prepared by embedding IIP in plasticized polyvinyl chloride and depositing it as one layer on the GCE surface. Anodic stripping voltammetry was used to construct the calibration graph; the IIP/GO@GCE exhibited a wider detection range (4.2 × 10-12-5.6 × 10-3 mol L-1) and extremely low detection limit (7 × 10-14 mol L-1) for Cd(ii). Meanwhile, the potentiometric sensor showed a linear calibration curve for Cd(ii) over a concentration range from 7.3 × 10-8 mol L-1 to 2.4 × 10-3 mol L-1 with a detection limit of 6.3 × 10-10 mol L-1. Furthermore, both sensors offered outstanding selectivity for Cd(ii) over a wide assortment of other common ions, high reproducibility, and excellent stability.
Collapse
Affiliation(s)
- A B Abdallah
- Department of Chemistry, Faculty of Science, Mansoura University El-Gomhoria Street Mansoura-35516 Egypt +20 1090433273
| | - Mohamed R El-Kholany
- Department of Chemistry, Faculty of Science, Mansoura University El-Gomhoria Street Mansoura-35516 Egypt +20 1090433273
| | - A F S Molouk
- Department of Chemistry, Faculty of Science, Mansoura University El-Gomhoria Street Mansoura-35516 Egypt +20 1090433273
| | | | - A A El-Shafei
- Department of Chemistry, Faculty of Science, Mansoura University El-Gomhoria Street Mansoura-35516 Egypt +20 1090433273
| | - Magdi E Khalifa
- Department of Chemistry, Faculty of Science, Mansoura University El-Gomhoria Street Mansoura-35516 Egypt +20 1090433273
| |
Collapse
|
12
|
Yuan Z, Wang L, Chen J, Su W, Li A, Su G, Liu P, Zhou X. Electrochemical strategies for the detection of cTnI. Analyst 2021; 146:5474-5495. [PMID: 34515706 DOI: 10.1039/d1an00808k] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Acute myocardial infarction (AMI) is the main cause of death from cardiovascular diseases. Thus, early diagnosis of AMI is essential for the treatment of irreversible damage from myocardial infarction. Traditional electrocardiograms (ECG) cannot meet the specific detection of AMI. Cardiac troponin I (cTnI) is the main biomarker for the diagnosis of myocardial infarction, and the detection of cTnI content has become particularly important. In this review, we introduced and compared the advantages and disadvantages of various cTnI detection methods. We focused on the analysis and comparison of the main indicators and limitations of various cTnI biosensors, including the detection range, detection limit, specificity, repeatability, and stability. In particular, we pay more attention to the application and development of electrochemical biosensors in the diagnosis of cardiovascular diseases based on different biological components. The application of electrochemical microfluidic chips for cTnI was also briefly introduced in this review. Finally, this review also briefly discusses the unresolved challenges of electrochemical detection and the expectations for improvement in the detection of cTnI biosensing in the future.
Collapse
Affiliation(s)
- Zhipeng Yuan
- Advanced Micro and Nano-instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. .,Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Li Wang
- Advanced Micro and Nano-instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. .,Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Jun Chen
- Advanced Micro and Nano-instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. .,Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Weiguang Su
- Advanced Micro and Nano-instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. .,Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Anqing Li
- Advanced Micro and Nano-instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. .,Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Guosheng Su
- Advanced Micro and Nano-instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. .,Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Pengbo Liu
- Advanced Micro and Nano-instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. .,Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | | |
Collapse
|
13
|
Zheng X, Khaoulani S, Ktari N, Lo M, Khalil AM, Zerrouki C, Fourati N, Chehimi MM. Towards Clean and Safe Water: A Review on the Emerging Role of Imprinted Polymer-Based Electrochemical Sensors. SENSORS (BASEL, SWITZERLAND) 2021; 21:4300. [PMID: 34201852 PMCID: PMC8271813 DOI: 10.3390/s21134300] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 12/20/2022]
Abstract
This review critically summarizes the knowledge of imprinted polymer-based electrochemical sensors for the detection of pesticides, metal ions and waterborne pathogenic bacteria, focusing on the last five years. MIP-based electrochemical sensors exhibit low limits of detection (LOD), high selectivity, high sensitivity and low cost. We put the emphasis on the design of imprinted polymers and their composites and coatings by radical polymerization, oxidative polymerization of conjugated monomers or sol-gel chemistry. Whilst most imprinted polymers are used in conjunction with differential pulse or square wave voltammetry for sensing organics and metal ions, electrochemical impedance spectroscopy (EIS) appears as the chief technique for detecting bacteria or their corresponding proteins. Interestingly, bacteria could also be probed via their quorum sensing signaling molecules or flagella proteins. If much has been developed in the past decade with glassy carbon or gold electrodes, it is clear that carbon paste electrodes of imprinted polymers are more and more investigated due to their versatility. Shortlisted case studies were critically reviewed and discussed; clearly, a plethora of tricky strategies of designing selective electrochemical sensors are offered to "Imprinters". We anticipate that this review will be of interest to experts and newcomers in the field who are paying time and effort combining electrochemical sensors with MIP technology.
Collapse
Affiliation(s)
- Xiaofeng Zheng
- Université de Paris, CNRS, ITODYS (UMR 7086), 75013 Paris, France;
| | - Sohayb Khaoulani
- SATIE, UMR CNRS 8029, Cnam, 75003 Paris, France; (S.K.); (C.Z.); (N.F.)
| | - Nadia Ktari
- Laboratoire Matériaux, Traitement et Analyse, INRAP, BiotechPole Sidi-Thabet, Ariana 2032, Tunisia;
| | - Momath Lo
- Département de Chimie, Laboratoire de Chimie Physique Organique & Analyse Instrumentale, Faculté des Sciences, Université Cheikh Anta Diop, Dakar 5005, Senegal;
| | - Ahmed M. Khalil
- Photochemistry Department, National Research Centre, Dokki, Giza 12622, Egypt;
- Université Paris Est, CNRS, ICMPE, UMR7182, 94320 Thiais, France
| | - Chouki Zerrouki
- SATIE, UMR CNRS 8029, Cnam, 75003 Paris, France; (S.K.); (C.Z.); (N.F.)
| | - Najla Fourati
- SATIE, UMR CNRS 8029, Cnam, 75003 Paris, France; (S.K.); (C.Z.); (N.F.)
| | - Mohamed M. Chehimi
- Université de Paris, CNRS, ITODYS (UMR 7086), 75013 Paris, France;
- Université Paris Est, CNRS, ICMPE, UMR7182, 94320 Thiais, France
| |
Collapse
|