1
|
Wei B, Cui Y, Ma S, Liu H, Bai Y. Synthesis of Stimulus-Responsive ABC Triblock Fluorinated Polyether Amphiphilic Polymer and Application as Low Toxicity Smart Drug Carrier. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
2
|
Polyether fluorinated amphiphilic diblock polymer: Preparation, characterization and application as drug delivery agent. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Yang R, Yang S, Lin Y, Su Y, Li Y, Zheng C. Miniature microplasma carbon optical emission spectrometry for detection of dissolved oxygen in water. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Design of a Cell Phone Lens-Based Miniature Microscope with Configurable Magnification Ratio. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Application of cell-phone-based microscopes has been hindered by limitations such as inferior image quality, fixed magnification and inconvenient operation. In this paper, we propose a reverse cell phone lens-based miniature microscope with a configurable magnification ratio. By switching the objectives of three camera lens and applying the digital zooming function of the cell phone, a cell phone microscope is built with the continuously configurable magnification ratio between 0.8×–11.5×. At the same time, the miniature microscope can capture high-quality microscopic images with a maximum resolution of up to 575 lp/mm and a maximum field of view (FOV) of up to 7213 × 5443 μm. Furthermore, by moving the tube lens module of the microscope out of the cell phone body, the built miniature microscope is as compact as a <20 mm side length cube, improving operational experience profoundly. The proposed scheme marks a big step forward in terms of the imaging performance and user operational convenience for cell phone microscopes.
Collapse
|