1
|
Aydın H, Üstün B, Kurtan Ü, Şahintürk U, Karakuş S. In situ synthesis of europium oxide (Eu 2O 3) nanoparticles in heteroatom doped carbon nanofibers for boosting the cycling stability of supercapacitors. Dalton Trans 2024; 53:12223-12233. [PMID: 38976003 DOI: 10.1039/d4dt01297f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Maintaining a high specific energy without losing cycling stability is the focus of the supercapacitor field. In this study, carbon nanofibers including europium oxide nanoparticles (CNF/Eu2O3) have been synthesized in the presence of thiourea via a simple approach and applied for the first time as an electrode for SCs. The CNF/Eu2O3-1 electrode doped with nitrogen and sulfur heteroatoms possessed a favorable specific capacitance of 183.2 F g-1, a specific energy of 9.15 W h kg-1, and an excellent capacitance retention of 94.8% even after 10 000 cycles at 1 A g-1. Such excellent performance is ascribed to the surface functionalities, high surface area, and good interaction of Eu2O3 with CNFs. This strategy will provide guidance for other rare element-based electrodes in the field of energy storage.
Collapse
Affiliation(s)
- Hamide Aydın
- Department of Chemistry, İstanbul University-Cerrahpaşa, 34320, İstanbul, Türkiye.
| | - Burcu Üstün
- Department of Chemical Engineering, İstanbul University-Cerrahpaşa, 34320, İstanbul, Türkiye
| | - Ümran Kurtan
- Department of Materials and Materials Processing Technologies, Vocational School of Technical Sciences, 34500, İstanbul, Türkiye
| | - Utkan Şahintürk
- Department of Mechanical and Metal Technologies, İstanbul University-Cerrahpaşa, 34500, İstanbul, Türkiye
| | - Selcan Karakuş
- Department of Chemistry, İstanbul University-Cerrahpaşa, 34320, İstanbul, Türkiye.
- Health Biotechnology Center for Excellence Joint Practice and Research (SABIOTEK), İstanbul University-Cerrahpaşa, 34320, İstanbul, Türkiye
| |
Collapse
|
2
|
Gao H, Wang Z, Cao J, Lin YC, Ling X. Advancing Nanoelectronics Applications: Progress in Non-van der Waals 2D Materials. ACS NANO 2024; 18:16343-16358. [PMID: 38899467 DOI: 10.1021/acsnano.4c01177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Extending the inventory of two-dimensional (2D) materials remains highly desirable, given their excellent properties and wide applications. Current studies on 2D materials mainly focus on the van der Waals (vdW) materials since the discovery of graphene, where properties of atomically thin layers have been found to be distinct from their bulk counterparts. Beyond vdW materials, there are abundant non-vdW materials that can also be thinned down to 2D forms, which are still in their early stage of exploration. In this review, we focus on the downscaling of non-vdW materials into 2D forms to enrich the 2D materials family. This underexplored group of 2D materials could show potential promise in many areas such as electronics, optics, and magnetics, as has happened in the vdW 2D materials. Hereby, we will focus our discussion on their electronic properties and applications of them. We aim to motivate and inspire fellow researchers in the 2D materials community to contribute to the development of 2D materials beyond the widely studied vdW layered materials for electronic device applications. We also give our insights into the challenges and opportunities to guide researchers who are desirous of working in this promising research area.
Collapse
Affiliation(s)
- Hongze Gao
- Department of Chemistry, Boston University 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Zifan Wang
- Department of Chemistry, Boston University 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Jun Cao
- Department of Chemistry, Boston University 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Yuxuan Cosmi Lin
- Department of Materials Science and Engineering, Texas A&M University 575 Ross Street, College Station, Texas 77843, United States
| | - Xi Ling
- Department of Chemistry, Boston University 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Division of Materials Science and Engineering, Boston University 15 St Mary's Street, Boston, Massachusetts 02215, United States
| |
Collapse
|
3
|
Bulla M, Kumar V, Devi R, Kumar S, Sisodiya AK, Dahiya R, Mishra AK. Natural resource-derived NiO nanoparticles via aloe vera for high-performance symmetric supercapacitor. Sci Rep 2024; 14:7389. [PMID: 38548838 PMCID: PMC10978893 DOI: 10.1038/s41598-024-57606-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 03/20/2024] [Indexed: 04/01/2024] Open
Abstract
This investigation reported a one-step green synthesis of nickel oxide nanoparticles (NiO NPs) using aloe vera leaves extract solution for their application in a supercapacitor. This method used aloe vera leaves as a reducing agent, which is very simple and cost-effective. The synthesized NPs were thoroughly characterized using various techniques. The X-ray diffraction analysis unequivocally confirmed the crystalline nature; field emission scanning electron microscopy and transmission electron microscopy images showed different shapes and forms of an agglomerated cluster of synthesized NPs. The absorption spectra were recorded from UV visible spectroscopy, while Fourier transform infrared spectroscopy provided insights into the functional groups present. Electrochemical assessments were carried out via cyclic voltammetry, galvanostatic charging-discharging and electrochemical impedance spectroscopy. These experiments were performed using a 2 M KOH electrolyte within a 1.0 V potential window. Impressively, the single electrode displayed a remarkable specific capacitance of 462 F g-1 at a scan rate of 1 mV s-1 and 336 F g-1 at a current density of 0.76 A g-1. Further, a symmetric two-electrode device (NiO||NiO) has been successfully fabricated by employing a separator between the electrodes. The device exhibited an exceptional specific capacitance of approximately 239 F g-1, along with an energy density of 47.8 Wh kg-1 and a power density of 545 W kg-1 at 1 A g-1 current density within a 1.2 V potential window. The fabricated device also shows a retention capacity of 89% at 10 A g-1 after 2000 cycles with 114% of columbic efficiency. The present study underscores the effectiveness of the green synthesis approach in producing NiO NPs and establishes their potential as highly promising candidates for supercapacitor applications, showcasing both excellent electrochemical performance in a three-electrode system and remarkable stability in a practical two-electrode device. The results collectively highlight the efficacy of the green approach in producing NiO NPs, establishing its potential as a highly promising candidate for supercapacitor application.
Collapse
Affiliation(s)
- Mamta Bulla
- Department of Physics, COBS&H, CCS Haryana Agricultural University, Hisar, Haryana, 125004, India
| | - Vinay Kumar
- Department of Physics, COBS&H, CCS Haryana Agricultural University, Hisar, Haryana, 125004, India.
| | - Raman Devi
- Department of Physics, COBS&H, CCS Haryana Agricultural University, Hisar, Haryana, 125004, India
| | - Sunil Kumar
- Department of Physics, COBS&H, CCS Haryana Agricultural University, Hisar, Haryana, 125004, India
| | | | - Rita Dahiya
- Department of Physics, COBS&H, CCS Haryana Agricultural University, Hisar, Haryana, 125004, India
| | - Ajay Kumar Mishra
- Department of Chemistry, Durban University of Technology, Steve Biko Road, Durban, 4001, South Africa.
| |
Collapse
|
4
|
Abbas Q, Khurshid H, Yoosuf R, Lawrence J, Issa BA, Abdelkareem MA, Olabi AG. Engineering of nickel, cobalt oxides and nickel/cobalt binary oxides by electrodeposition and application as binder free electrodes in supercapacitors. Sci Rep 2023; 13:15654. [PMID: 37730862 PMCID: PMC10511720 DOI: 10.1038/s41598-023-42647-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/13/2023] [Indexed: 09/22/2023] Open
Abstract
Cobalt oxide, nickel oxide and cobalt/nickel binary oxides were synthesised by electrodeposition. To fine tune composition of CoNi alloys, growth parameters including voltage, electrolyte pH/concentration and deposition time were varied. These produced nanomaterials were used as binder free electrodes in supercapacitor cells and tested using three electrode setup in 2 MKOH aqueous electrolyte. Cyclic voltammetry and galvanostatic charge/discharge were used at different scan rates (5-100 mV/s) and current densities (1-10 A/g) respectively to investigate the capacitive behaviour and measure the capacitance of active material. Electrochemical impedance spectroscopy was used to analyse the resistive/conductive behaviours of these electrodes in frequency range of 100 kHz to 0.01 Hz at applied voltage of 10 mV. Binary oxide electrode displayed superior electrochemical performance with the specific capacitance of 176 F/g at current density of 1 A/g. This hybrid electrode also displayed capacitance retention of over 83% after 5000 charge/discharge cycles. Cell displayed low solution resistance of 0.35 Ω along with good conductivity. The proposed facile approach to synthesise binder free blended metal electrodes can result in enhanced redox activity of pseudocapacitive materials. Consequently, fine tuning of these materials by controlling the cobalt and nickel contents can assist in broadening their applications in electrochemical energy storage in general and in supercapacitors in particular.
Collapse
Affiliation(s)
- Qaisar Abbas
- School of Computing, Engineering and Physical Sciences, Institute of Thin Films, Sensors and Imaging, (ITFSI), University of the West of Scotland, Glasgow, PA1 2BE, UK.
| | - Hafsa Khurshid
- Department of Applied Physics and Astronomy, University of Sharjah, Sharjah, 27272, UAE.
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03756, USA.
| | - Rahana Yoosuf
- Department of Applied Physics and Astronomy, University of Sharjah, Sharjah, 27272, UAE
| | - Jonathan Lawrence
- School of Computing, Engineering and Physical Sciences, Institute of Thin Films, Sensors and Imaging, (ITFSI), University of the West of Scotland, Glasgow, PA1 2BE, UK
| | - Bashar A Issa
- Department of Medical Diagnostic Imaging, University of Sharjah, Sharjah, UAE
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34010, Turkey
| | - Mohammad Ali Abdelkareem
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | - Abdul Ghani Olabi
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| |
Collapse
|
5
|
Su M, Cao X, Gao H, Zhu C, Peng W, Jiang Q, Yu C. Honeycomb-like nickel oxide-reduced graphene oxide based sensor for the electrochemical tracking of norepinephrine in neuronal cells. Anal Chim Acta 2023; 1262:341247. [PMID: 37179062 DOI: 10.1016/j.aca.2023.341247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/05/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
Highly sensitive and specific detection and monitoring of trace norepinephrine (NE) in biological fluids and neuronal cell lines is essential for the investigation of pathogenesis of certain neurological diseases. Herein, we constructed a novel electrochemical sensor for real-time monitoring of NE released by PC12 cells based on glassy carbon electrode (GCE) modified with honeycomb-like nickel oxide (NiO)-reduced graphene oxide (RGO) nanocomposite. The synthesized NiO, RGO and the NiO-RGO nanocomposite were characterized using X-ray diffraction spectrogram (XRD), Raman spectroscopy and scanning electron microscopy (SEM). The porous three-dimensional honeycomb-like structure of NiO and high charge transfer kinetics of RGO endowed the nanocomposite with excellent electrocatalytic activity, large surface area and good conductivity. The developed sensor exhibited superior sensitivity and specificity towards NE in a wide linear range from 20 nM to 14 μM and 14 μM-80 μM, with a low detection limit of 5 nM. The performances of the sensor in terms of excellent biocompatibility and high sensitivity allow it to be successfully employed in the tracking of NE release from PC12 cells under the stimulation of K+, providing an effective strategy for the real-time monitoring of cellular NE.
Collapse
Affiliation(s)
- Mengjie Su
- School of Public Health, Nantong University, Nantong, 226019, PR China
| | - Xiaoqing Cao
- School of Public Health, Nantong University, Nantong, 226019, PR China
| | - Hui Gao
- School of Public Health, Nantong University, Nantong, 226019, PR China
| | - Cailing Zhu
- School of Public Health, Nantong University, Nantong, 226019, PR China
| | - Wenjing Peng
- School of Public Health, Nantong University, Nantong, 226019, PR China
| | - Qiyu Jiang
- School of Public Health, Nantong University, Nantong, 226019, PR China
| | - Chunmei Yu
- School of Public Health, Nantong University, Nantong, 226019, PR China.
| |
Collapse
|
6
|
Fan P, Ye C, Xu L. Core‐shell Nanofiber‐based Electrodes for High‐performance Asymmetric Supercapacitors. ChemistrySelect 2023. [DOI: 10.1002/slct.202204669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- Peizhi Fan
- National Engineering Laboratory for Modern Silk College of Textile and Engineering Soochow University Suzhou 215123 China
| | - Chengwei Ye
- National Engineering Laboratory for Modern Silk College of Textile and Engineering Soochow University Suzhou 215123 China
| | - Lan Xu
- National Engineering Laboratory for Modern Silk College of Textile and Engineering Soochow University Suzhou 215123 China
| |
Collapse
|
7
|
Fan P, Xu L. Core-Shell Carbon Nanofibers@Ni(OH) 2/NiO Composites for High-Performance Asymmetric Supercapacitors. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8377. [PMID: 36499871 PMCID: PMC9738488 DOI: 10.3390/ma15238377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/10/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
The application of transition metal oxides/hydroxides in energy storage has long been studied by researchers. In this paper, the core-shell CNFs@Ni(OH)2/NiO composite electrodes were prepared by calcining carbon nanofibers (CNFs) coated with Ni(OH)2 under an N2 atmosphere, in which NiO was generated by the thermal decomposition of Ni(OH)2. After low-temperature carbonization at 200 °C, 250 °C and 300 °C for 1 h, Ni(OH)2 or/and NiO existed on the surface of CNFs to form the core-shell composite CNFs@Ni(OH)2/NiO-X (X = 200, 250, 300), in which CNFs@Ni(OH)2/NiO-250 had the optimal electrochemical properties due to the coexistence of Ni(OH)2 and NiO. Its specific capacitance could reach 695 F g-1 at 1 A g-1, and it still had 74% capacitance retention and 88% coulomb efficiency after 2000 cycles at 5 A g-1. Additionally, the asymmetric supercapacitor (ASC) assembled from CNFs@Ni(OH)2/NiO-250 had excellent energy storage performance with a maximum power density of 4000 W kg-1 and a maximum functional capacity density of 16.56 Wh kg-1.
Collapse
|
8
|
Pradiprao Khedulkar A, Dien Dang V, Pandit B, Ai Ngoc Bui T, Linh Tran H, Doong RA. Flower-like nickel hydroxide@tea leaf-derived biochar composite for high-performance supercapacitor application. J Colloid Interface Sci 2022; 623:845-855. [DOI: 10.1016/j.jcis.2022.04.178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/23/2022] [Accepted: 04/30/2022] [Indexed: 01/17/2023]
|
9
|
Organically modified polyaniline for physiological fluids operatable supercapacitor electrodes. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Zhao L, Lei S, Tang C, Tu Q, Rao L, Liao H, Zeng W, Xiao Y, Cheng B. Self-supported electrode based on two-dimensional NiPS3 for supercapacitor application. J Colloid Interface Sci 2022; 616:401-412. [DOI: 10.1016/j.jcis.2022.02.089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/11/2022] [Accepted: 02/19/2022] [Indexed: 12/22/2022]
|
11
|
Younas W, Naveed M, Cao C, Zhu Y, Du C, Ma X, Mushtaq N, Tahir M, Naeem M. Facile One-Step Microwave-Assisted Method to Synthesize Nickel Selenide Nanosheets for High-Performance Hybrid Supercapacitor. J Colloid Interface Sci 2022; 608:1005-1014. [PMID: 34785449 DOI: 10.1016/j.jcis.2021.09.153] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/27/2022]
Abstract
Nanosheets structures can be employed as the most promising electrode material to enhance electrochemical performance for supercapacitors. Nickel Selenide (Ni0.85Se) nanosheets are synthesized using a rapid microwave synthesis method in a single step. The Ni0.85Se nanosheets possess a high surface area (125 m2g-1) with a hexagonal crystalline structure. It shows magnificent electrochemical properties, such as splendid specific capacitance (2530 Fg-1 at 0.5 Ag-1). An asymmetric hybrid supercapacitor is fabricated with nickel selenide nanosheets as a positive electrode and activated carbon as a negative electrode. The assembled hybrid supercapacitor displays a high energy density of 63.5 WhKg-1 at a power density of 404 WKg-1, and after 8000 cycles, only 5% capacitance is lost along with the better voltage window at 0-1.6 V.
Collapse
Affiliation(s)
- Waqar Younas
- Research Center of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing 100081, China
| | - Muhammad Naveed
- Research Center of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing 100081, China
| | - Chuanbao Cao
- Research Center of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing 100081, China.
| | - Youqi Zhu
- Research Center of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing 100081, China
| | - Changliang Du
- Research Center of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing 100081, China
| | - Xilan Ma
- Research Center of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing 100081, China.
| | - Nouraiz Mushtaq
- Research Center of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing 100081, China
| | - Muhammad Tahir
- Research Center of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing 100081, China
| | - Muhammad Naeem
- Research Center of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
12
|
Zhou T, Tang S, Yu H, Shen L, Huang Q, Yang S, Yu L, Zhang L. Microwave heating followed by a solvothermal method to synthesize nickel–cobalt selenide/rGO for high-performance supercapacitors. NEW J CHEM 2022. [DOI: 10.1039/d2nj00488g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Efficient microwave heating followed by a solvothermal method is used to synthesize (Ni0.85Se)3(Co0.85Se)/rGO nanorods with an ultrahigh specific capacitance of 2009 F g−1 at a current density of 2 A g−1.
Collapse
Affiliation(s)
- Tianli Zhou
- State Key Lab of Oil and Gas Reservoir Geology & Exploitation, Southwest Petroleum University, Chengdu 610500, P. R. China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Shuihua Tang
- State Key Lab of Oil and Gas Reservoir Geology & Exploitation, Southwest Petroleum University, Chengdu 610500, P. R. China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Honglin Yu
- State Key Lab of Oil and Gas Reservoir Geology & Exploitation, Southwest Petroleum University, Chengdu 610500, P. R. China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Lieha Shen
- State Key Lab of Oil and Gas Reservoir Geology & Exploitation, Southwest Petroleum University, Chengdu 610500, P. R. China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Qiankuan Huang
- State Key Lab of Oil and Gas Reservoir Geology & Exploitation, Southwest Petroleum University, Chengdu 610500, P. R. China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Shuang Yang
- State Key Lab of Oil and Gas Reservoir Geology & Exploitation, Southwest Petroleum University, Chengdu 610500, P. R. China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Limei Yu
- State Key Lab of Oil and Gas Reservoir Geology & Exploitation, Southwest Petroleum University, Chengdu 610500, P. R. China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Lei Zhang
- State Key Lab of Oil and Gas Reservoir Geology & Exploitation, Southwest Petroleum University, Chengdu 610500, P. R. China
- School of Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| |
Collapse
|
13
|
Tian J, Xue Y, Wu K, Guo M, Zeng X. TPAOH‐Assisted Preparation of Hexagonal Ni(OH)
2
Nanoplates for Supercapacitors**. ChemistrySelect 2021. [DOI: 10.1002/slct.202103360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jinjun Tian
- School of Biology and chemical Engineering/ Henan Key Laboratory of microbial fermentation Nanyang Institute of Technology Henan Nanyang 473000 PR China
| | - Yan Xue
- School of Biology and chemical Engineering/ Henan Key Laboratory of microbial fermentation Nanyang Institute of Technology Henan Nanyang 473000 PR China
| | - Keliang Wu
- School of Biology and chemical Engineering/ Henan Key Laboratory of microbial fermentation Nanyang Institute of Technology Henan Nanyang 473000 PR China
| | - Meng Guo
- School of Biology and chemical Engineering/ Henan Key Laboratory of microbial fermentation Nanyang Institute of Technology Henan Nanyang 473000 PR China
| | - Xiancai Zeng
- School of Biology and chemical Engineering/ Henan Key Laboratory of microbial fermentation Nanyang Institute of Technology Henan Nanyang 473000 PR China
| |
Collapse
|
14
|
Al-Maswari BM, Ahmed J, Alzaqri N, Ahamad T, Mao Y, Hezam A, Venkatesha B. Synthesis of perovskite bismuth ferrite embedded nitrogen-doped Carbon (BiFeO3-NC) nanocomposite for energy storage application. JOURNAL OF ENERGY STORAGE 2021; 44:103515. [DOI: 10.1016/j.est.2021.103515] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
|